Skip to main content
Log in

Mixed convection in a liquid-saturated densely packed porous medium using local thermal non-equilibrium model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

An analytic study of Darcy–Bénard convection in a Newtonian liquid-saturated porous medium in the presence of pressure gradient and heat source using local thermal non-equilibrium model (LTNE) is carried out. The presumption of LTNE hastens the convection onset and augments the amount of heat transport. The effect of increasing the porosity-modified ratio of thermal conductivity and heat source fosters the convection onset and inflates the amount of heat transport, while an opposite trend is noticed in case of the remaining parameters. The effect of LTNE ceases and results of Darcy–Bénard convection using LTE model are obtained as a limiting case for large values of ratio of thermal conductivities and interphase heat transfer coefficient. Asymptotic analysis is carried out to determine the point at which the effect of LTNE ceases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

Abbreviations

A,B,C:

Amplitudes

c :

Specific heat

d :

Depth of the fluid-saturated porous medium

g :

Acceleration due to gravity

H :

Scaled interphase heat transfer coefficient

k :

Thermal conductivity

h :

Dimensional interphase heat transfer coefficient

K :

Permeability

Nu :

Nusselt number

p :

Pressure

Q :

Uniform heat source strength

\(R_{D}\) :

Darcy–Rayleigh number

t :

Dimensional time

\(T_{U}\) :

Temperature of the upper boundary

\(T_{L}\) :

Temperature of the lower boundary

uvw :

Darcian velocities in the x, y and z direction

xyz :

Cartesian coordinates

\(\gamma\) :

Porosity-modified thermal conductivity ratio

\(\alpha\) :

Diffusivity ratio

\(\beta\) :

Thermal expansion coefficient

\(\phi\) :

Temperature of the solid phase

\(\Phi\) :

Dimensionless temperature of the solid phase

\(\psi\) :

Stream function

\(\Psi\) :

Perturbed stream function

\(\rho\) :

Density

\(\epsilon\) :

Porosity

\(\Pi\) :

Non-dimensional pressure gradient

\(\theta\) :

Temperature of the fluid phase

\(\Theta\) :

Dimensionless temperature of the fluid phase

b :

Basic state

c :

Cold and also critical

f :

Fluid phase

h :

Hot

s :

Solid phase

U :

Upper

L :

Lower

LTNE :

Local thermal non-equilibrium

LTE :

Local thermal equilibrium

References

  1. N. Banu, D. Rees, Onset of Darcy-Bénard convection using a thermal non-equilibrium model. Int. J. Heat Mass Trans. 45(11), 2221–2228 (2002)

    Article  MATH  Google Scholar 

  2. A. Postelnicu, D. Rees, The onset of Darcy-Brinkman convection in a porous layer using a thermal nonequlibrium model-part I: stress-free boundaries. Int. J. Energy Res. 27(10), 961–973 (2003)

    Article  Google Scholar 

  3. D.A.S. Rees, I. Pop, Local thermal non-equilibrium in porous medium convection. In: Transport phenomena in porous media III, Elsevier, 147–173 (2005)

  4. A. Postelnicu, The onset of a Darcy-Brinkman convection using a thermal nonequilibrium model. Part II. Int. J. Therm. Sci. 47(12), 1587–1594 (2008)

    Article  Google Scholar 

  5. A. Barletta, M. Celli, H. Lagziri, Instability of a horizontal porous layer with local thermal non-equilibrium: effects of free surface and convective boundary conditions. Int. J. Heat Mass Transf. 89, 75–89 (2015)

    Article  Google Scholar 

  6. B. Straughan, Convection with local thermal non-equilibrium and microfluidic effects, vol. 32 (Springer, Berlin, 2015)

    MATH  Google Scholar 

  7. D.A. Nield, A.V. Kuznetsov, A. Barletta, M. Celli, The onset of convection in a sloping layered porous medium: Effects of local thermal non-equilibrium and heterogeneity. Transp. Porous Media 114(1), 87–97 (2016)

    Article  MathSciNet  Google Scholar 

  8. P.G. Siddheshwar, C. Siddabasappa, Linear and weakly nonlinear stability analyses of two-dimensional, steady brinkman-bénard convection using local thermal non-equilibrium model. Transp. Porous Media 120(3), 605–631 (2017)

    Article  MathSciNet  Google Scholar 

  9. P.G. Siddheshwar, T.N. Sakshath, Study of Rayleigh-Bénard convection of a Newtonian nanoliquid in a high porosity medium using local thermal non-equilibrium model. Int. J. Appl. Comput. Math. 5(6), 1–35 (2019)

    Article  MATH  Google Scholar 

  10. B. Bhadauria, Double-diffusive convection in a saturated anisotropic porous layer with internal heat source. Transp. Porous Media 92(2), 299–320 (2012)

    Article  MathSciNet  Google Scholar 

  11. P.H. Roberts, Convection in horizontal layers with internal heat generation. J. Fluid Mech. 30(01), 33–49 (1967)

    Article  ADS  Google Scholar 

  12. M. Tveitereid, E. Palm, Convection due to internal heat sources. J. Fluid Mech. 76(03), 481–499 (1976)

    Article  ADS  MATH  Google Scholar 

  13. R. Thirlby, Convection in an internally heated layer. J. Fluid Mech. 44(04), 673–693 (1970)

    Article  ADS  MATH  Google Scholar 

  14. R.M. Clever, Heat transfer and stability properties of convection rolls in an internally heated fluid layer. Zeitschrift für angewandte Mathematik und Physik ZAMP 28(4), 585–597 (1977)

    Article  ADS  MATH  Google Scholar 

  15. A. Nouri-Borujerdi, A.R. Noghrehabadi, D.A.S. Rees, Onset of convection in a horizontal porous channel with uniform heat generation using a thermal nonequilibrium model. Transp. Porous Media 69(3), 343–357 (2007)

    Article  MathSciNet  Google Scholar 

  16. A. Matta, P. Narayana, A.A. Hill, Nonlinear thermal instability in a horizontal porous layer with an internal heat source and mass flow. Acta Mech. 227(6), 1743–1751 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Straughan, Global nonlinear stability in porous convection with a thermal non-equilibrium model. Proc. Royal Soc. A: Math. Phys. Eng. Sci. 462(2066), 409–418 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Nouri-Borujerdi, A.R. Noghrehabadi, D.A.S. Rees, The effect of local thermal non-equilibrium on conduction in porous channels with a uniform heat source. Transp. Porous Media 69(2), 281–288 (2007)

    Article  MATH  Google Scholar 

  19. A. Nouri-Borujerdi, A.R. Noghrehabadi, D.A.S. Rees, Influence of Darcy number on the onset of convection in a porous layer with a uniform heat source. Int. J. Therm. Sci. 47(8), 1020–1025 (2008)

    Article  Google Scholar 

  20. S. Saravanan, Thermal non-equilibrium porous convection with heat generation and density maximum. Transp. Porous Media 76(1), 35–43 (2009)

    Article  MathSciNet  Google Scholar 

  21. A. Kuznetsov, D. Nield, Local thermal non-equilibrium and heterogeneity effects on the onset of convection in an internally heated porous medium. Transp. Porous Media 102(1), 15–30 (2014)

    Article  MathSciNet  Google Scholar 

  22. A. Postelnicu, The effect of a horizontal pressure gradient on the onset of a Darcy-Bénard convection in thermal non-equilibrium conditions. Int. J. Heat Mass Transf. 53(1–3), 68–75 (2010)

    Article  MATH  Google Scholar 

  23. T.N. Sakshath, A.P. Joshi, Effect of horizontal pressure gradient on Rayleigh-Bénard convection of a Newtonian nanoliquid in a high porosity medium using a local thermal non-equilibrium model. Heat Transf. 50(2), 1631–1657 (2021)

    Article  Google Scholar 

  24. C. Siddabasappa, T.N. Sakshath, Effect of thermal non-equilibrium and internal heat source on Brinkman-Bénard convection. Physica A 566, 125617 (2021)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their most valuable comments that improved the paper considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Hemanth Kumar.

Appendices

Appendix A

This section involves the asymptotic analysis in case of \(H\rightarrow 0\), \(H\rightarrow \infty\) and \(\gamma \rightarrow \infty\) for the existence of heat source in the fluid phase by linear stability analysis (see Sect. (3.1)). (32) is expanded in powers of H, \(\dfrac{1}{H}\) and \(\dfrac{1}{\gamma }\) for the particular cases of \(H\rightarrow 0\), \(H\rightarrow \infty\) and \(\gamma \rightarrow \infty\), respectively.

Linear stability analysis

1.1 Existence of heat source in fluid phase:

1.1.1 Asymptotic analysis \((H\rightarrow 0)\)

In this case, \(R_{D}\) takes the form

$$\begin{aligned} R_{D}=\frac{\delta ^2 \left( -Q_{f}+\delta ^2\right) }{a^2}\left( 1+\frac{ H}{\left( -Q_{f}+\delta ^2\right) }-\frac{\gamma \delta ^2 H^2}{\left( -Q_{f}+\delta ^2\right) \left( \delta ^4+a^2 \alpha ^2 \Pi ^2\right) }....\right) \end{aligned}$$
(57)

The critical wave number \(a_{c}\) can be derived by minimizing \(R_{D}\) with respect to a and equating \(\dfrac{\partial R_{D}}{\partial a}=0\), keeping other parameters as constant, we obtain:

$$\begin{aligned} \begin{aligned}&\left( a^4-\pi ^4+\pi ^2 Q_f\right) \left( \delta ^4+a^2 \alpha ^2 \Pi ^2\right) ^2-\pi ^2 H\left( \delta ^4+a^2 \alpha ^2 \Pi ^2\right) ^2\\&\quad +\delta ^2 \gamma \left( \delta ^6+2 a^2 \pi ^2 \alpha ^2 \Pi ^2\right) H^2+..............=0. \end{aligned} \end{aligned}$$
(58)

Asymptotic expansion of a for small values of H, is given by:

$$\begin{aligned} a=a_{0}+a_{1}H+a_{2}H^{2}. \end{aligned}$$
(59)

where

$$\begin{aligned} a_{0}^{2}=\pi ^2-\pi \sqrt{Q_f} \end{aligned}$$
(60)

The first two corrections to the wave number are given by:

$$\begin{aligned} a_1=\frac{\pi ^2 \left( \delta _{0}^{2}+a_{0}^{2} \alpha ^2 \Pi ^2\right) }{4 a_0\left( \delta _{0}^{2}\left( 3 a_{0}^{4}+a_{0}^{2} \pi ^2-2\pi ^4+2 \pi ^2 Q_f\right) +\left( 2 a_{0}^{4}-\pi ^4+\pi ^2 Q_f\right) \alpha ^2 \Pi ^2\right) },\;\ a_2=\frac{\Delta _{11}}{\Delta _{12}}, \end{aligned}$$
(61)

where

$$\begin{aligned} \Delta _{11}&=\left( 2 a_{1} \delta _{0}^{4}\left( \delta _{0}^{2} \left( -33 a_{0}^{4} a_{1}+a_{0} \left( 4+9 a_0 a_1\right) \pi ^{2}+2 a_1 \pi ^4\right) -2 a_1 \pi ^2 \left( 7 a_{0}^{2}+\pi ^2\right) Q_{f}\right) \right. \\&\quad \left. -\delta _{0}^{8} \gamma -2 \alpha ^{2} \left( a_1\left( 45 a_{0}^{8} a_{1}+2 a_{0}^{5} \left( -3+28 a_0 a_1\right) \pi ^2-8 a_{0}^3 \pi ^4-2 a_0 \left( 1+6 a_0 a_1\right) \pi ^6\right. \right. \right. \\&\quad \left. \left. \left. -a_1 \pi ^8+a_1 \pi ^2 \left( 15 a_{0}^4+12 a_{0}^2 \pi ^2+\pi ^4\right) Q_f\right) +a_{0}^2 \pi ^2 \delta _{0}^2\gamma \right) \Pi ^2+2 a_{0}^2 a_1 \left( -14 a_{0}^4 a_1\right. \right. \\&\quad \left. \left. +2 a_0 \pi ^2+3 a_1\pi ^2 \left( \pi ^2-Q_f\right) \right) \alpha ^4 \Pi ^4\right) ,\\ \Delta _{12}&=\left( 4 a_0 \left( \delta _{0}^{4}+a_{0}^{2} \alpha ^2 \Pi ^2\right) \left( \delta _{0}^{2}\left( 3 a_{0}^{4}+a_{0}^{2} \pi ^2-2 \pi ^4+2 \pi ^2 Q_f\right) +\left( 2 a_{0}^{4}-\pi ^4+\pi ^2 Q_f\right) \alpha ^2 \Pi ^2\right) \right) . \end{aligned}$$

1.1.2 Asymptotic analysis \((H\rightarrow \infty )\)

In this case, \(R_{D}\) takes the form

$$\begin{aligned} R_D=\frac{\delta ^2 \left( \delta ^2(1+\gamma )-\text {Qf} \gamma \right) }{a^2 \gamma }-\frac{\delta ^2 \left( \delta ^4-a^2 \alpha ^2 \Pi ^2\right) }{a^2 \gamma ^2 H}+\frac{\delta ^4 \left( \delta ^4-3 a^2 \alpha ^2 \Pi ^2\right) }{a^2 \gamma ^3 H^2}.... \end{aligned}$$
(62)

Asymptotic expansion of a for \(H\rightarrow \infty\) is given by:

$$\begin{aligned} a=a_0+a_1H^{-1}+a_2H^{-2} \end{aligned}$$
(63)

where

$$\begin{aligned} a_0{}^2 =\pi \sqrt{\frac{\left( \pi ^2 (1+\gamma )-Q_f\gamma \right) }{(1+\gamma )}} \end{aligned}$$
(64)

The first two nonzero corrections to \(a_{c}\) are:

$$\begin{aligned} a_1=\frac{\Delta _{13}}{\Delta _{14}},\;\;\ a_2=\frac{\Delta _{15}}{\gamma \Delta _{14}}, \end{aligned}$$
(65)

where

$$\begin{aligned} \Delta _{13}& = {} a_{0}^6+3 a_{0}^{4} \pi ^2+3 a_{0}^{2} \pi ^4+\pi ^6-a_{0}^{4} \alpha ^2 \Pi ^2-a_{0}^{2} \pi ^2 \alpha ^2 \Pi ^2\\ \Delta _{14} & = 2 a_0 \gamma \left( 2 a_{0}^{2}+2 \pi ^2+2 a_{0}^{2} \gamma +2 \pi ^2 \gamma -Q_f \gamma \right) \\ \Delta _{15}& = a_0 \alpha ^2 \left( 3 a_{0} \left( a_{0}^{2}+\pi ^2\right) {}^2-2 \text {a1} \left( 2 a_{0}^{2}+\pi ^2\right) \gamma \right) \Pi ^2-a_{0}^{8}-4 a_{0}^{6} \pi ^2-6 a_{0}^{4} \pi ^4-4 a_{0}^{2} \pi ^6-\pi ^8\\{} & {} +6 a_{0}^{5} a_{1} \gamma +12 a_{0}^{3} a_1 \pi ^2 \gamma +6 a_0 a_1 \pi ^4 \gamma -6 a_{0}^{2} a_{1}^{2} \gamma ^2-2 a_{1}^{2} \pi ^2 \gamma ^2-6 a_{0}^{2} a_{1}^{2} \gamma ^3-2 a_{1}^{2} \pi ^2 \gamma ^3+a_{1}^{2} Q_{f} \gamma ^3. \end{aligned}$$

1.1.3 Asymptotic analysis \((\gamma \rightarrow \infty )\)

In this case, \(R_{D}\) takes the form

$$\begin{aligned}{} & {} R_D=\frac{\delta ^2\left( \delta ^2-Q_f\right) }{a^2}\left( 1+\frac{\delta ^2}{\left( \delta ^2-Q_f\right) \gamma }-\frac{\left( \delta ^4-a^2 \alpha ^2 \Pi ^2\right) }{\left( \delta ^2-Q_f\right) H \gamma ^2}.........\right) \end{aligned}$$
(66)
$$\begin{aligned}{} & {} a=a_0+a_1\gamma ^{-1}+a_2\gamma ^{-2} \end{aligned}$$
(67)

where

$$\begin{aligned} a_{0}^{2}=\pi ^2-\pi \sqrt{Q_f} \end{aligned}$$
(68)

The first two nonzero corrections to \(a_{c}\) are:

$$\begin{aligned} a_1=\frac{\delta _{0}^{4}}{2a_{0}Q_{f}-4 a_{0} \delta _{0}^{2}},\;\;\ a_2=\frac{\Delta _{16}}{\Delta _{17}}, \end{aligned}$$
(69)

where

$$\begin{aligned} \begin{aligned} \Delta _{16}&=a_{0}^{6}-4 a_{0}^{3} a_1 H-4 a_0 a_1 H \pi ^2+\pi ^6+a_{1}^{2} H \left( -2 \pi ^2+Q_f\right) +a_{0}^{4} \left( 3 \pi ^2-\alpha ^2 \Pi ^2\right) \\&\quad -a_{0}^{2} \left( 6 a_{1}^{2} H-3 \pi ^4+\pi ^2 \alpha ^2 \Pi ^2\right) ,\\ \Delta _{17}&=4 a_0H \delta _{0}^{2}-2 a_0H Q_f. \end{aligned} \end{aligned}$$

Appendix B

This section involves the asymptotic analysis in case of \(H\rightarrow 0\), \(H\rightarrow \infty\) and \(\gamma \rightarrow \infty\) for the existence of heat source in the fluid phase by linear stability analysis (see Sect. (3.2)). (33) is expanded in powers of H, \(\dfrac{1}{H}\) and \(\dfrac{1}{\gamma }\) for the particular cases of \(H\rightarrow 0\), \(H\rightarrow \infty\) and \(\gamma \rightarrow \infty\), respectively.

1.1 Existence of heat source in the solid phase

1.1.1 Asymptotic analysis \((H\rightarrow 0)\)

In this case, \(R_{D}\) takes the form

$$\begin{aligned} R_D=\frac{\delta ^4}{a^2}\left( 1+\frac{ H}{\delta ^2}-\frac{\left( -Q_s \gamma +\gamma \delta ^2\right) H^2}{\delta ^2\left( Q_s{}^2-2 Q_s \delta ^2+\delta ^4+a^2 \alpha ^2 \Pi ^2\right) }......\right) \end{aligned}$$
(70)

minimizing \(R_{D}\) given by Eq. (70) with respect to a, and by setting \(\dfrac{\partial R_{D}}{\partial a}=0\), we get an expression as follows:

$$\begin{aligned} \begin{aligned}&\left( a^4-\pi ^4\right) \left( \left( \delta ^2-Q_s\right) {}^2+a^2 \alpha ^2 \Pi ^2\right) {}^2-\pi ^2 H\left( \left( \delta ^2-Q_s\right) {}^2+a^2 \alpha ^2 \Pi ^2\right) {}^2\\&\quad +\gamma \left( \left( \delta ^2-Q_s\right) {}^2\left( \delta ^4-\pi ^2 Q_s\right) +a^2 \left( 2 \pi ^2\delta ^2 -\left( a^2+2 \pi ^2\right) Q_s\right) \alpha ^2 \Pi ^2\right) H^2=0 \end{aligned} \end{aligned}$$
(71)

Asymptotic expansion of a for small values of H, is given by:

$$\begin{aligned} a=a_{0}+a_{1}H+a_{2}H^{2}. \end{aligned}$$
(72)

where

$$\begin{aligned} a_{0}^{2}=\pi ^2,\;\;\ a_1=\frac{\pi ^2 \left( \left( \delta _{0}^{2}-Q_s\right) {}^2+a_{0}^{2} \alpha ^2 \Pi ^2\right) }{\Delta _{21}},\;\;\ a_2=\frac{\Delta _{22}}{\left( \left( \delta _{0}^{2}-Q_s\right) ^2+a_{0}^{2} \alpha ^2 \Pi ^2\right) \Delta _{21}}, \end{aligned}$$
(73)

where

$$\begin{aligned} \Delta _{21}&=4 a_0 \left( 3 a_{0}^{6}+a_{0}^{2} \left( -\pi ^4-2 \pi ^2 Q_s+Q_s^2\right) +2 a_{0}^{4} \left( 2 \pi ^2-2 Q_s+\alpha ^2 \Pi ^2\right) -\pi ^4 \left( 2 \pi ^2-2 Q_s+\alpha ^2 \Pi ^2\right) \right) , \end{aligned}$$
(74)
$$\begin{aligned} \Delta _{22}&=\left( -66 a_{0}^{10} a_{1}^{2}+8 a_{0}^{7} a_1 \pi ^2+12 a_{0}^{5} a_1 \pi ^2 \left( 2 \pi ^2-2 Q_s+\alpha ^2 \Pi ^2\right) +4 a_0a_1 \left( \pi ^3-\pi Q_s\right) ^2\right. \nonumber \\&\quad \left. \left( 2 \pi ^2-2 Q_s+\alpha ^2 \Pi ^2\right) +a_0={0}^{4} \left( \left( \pi ^2-Q_s\right) \left( 60 a_{1}^{2} \left( 2 \pi ^2-Q_s\right) Q_s+\left( -6 \pi ^2+Q_s\right) \gamma \right) \right. \right. \nonumber \\&\quad \left. \left. +\left( 2 \pi ^2-Q_s\right) \alpha ^2 \left( 30 a_{1}^{2} Q_s-\gamma \right) \Pi ^2\right) +4 a_{0}^{3} a_1 \pi ^2 \left( 6 \left( \pi ^2-Q_s\right) ^2+4 \left( \pi ^2-Q_s\right) \alpha ^2 \Pi ^2+\alpha ^4 \Pi ^4\right) \right. \nonumber \\&\quad \left. +2 a_{0}^{2} \left( \left( \pi ^2-Q_s\right) ^2 \left( 3 a_{1}^{2} \left( 5 \pi ^4+2 \pi ^2 Q_s-Q_s^2\right) -2 \pi ^2 \gamma \right) +\pi ^2 \left( \pi ^2-Q_s\right) \alpha ^2 \left( 12 a_{1}^{2} \pi ^2-\gamma \right) \Pi ^2\right. \right. \nonumber \\&\quad \left. \left. +3 a_{1}^{2} \pi ^4 \alpha ^4 \Pi ^4\right) -a_{0}^{8} \left( \gamma +90 a_{1}^{2} \left( 2 \pi ^2-2 Q_s+\alpha ^2 \Pi ^2\right) \right) +\left( \pi ^3-\pi Q_s\right) ^2 \left( \left( -\pi ^2+Q_s\right) \gamma \right. \right. \nonumber \\&\quad +\left. \left. 2 a_{1}^{2} \pi ^2 \left( 2 \pi ^2-2 Q_s+\alpha ^2 \Pi ^2\right) \right) -2 a_{0}^{6} \left( \left( 2 \pi ^2-Q_s\right) \gamma +14 a_{1}^{2} \left( 5 \pi ^4-12 \pi ^2 Q_s+6 Q_s^2\right. \right. \right. \nonumber \\&\quad +\left. \left. \left. 4 \left( \pi ^2-Q_s\right) \alpha ^2 \Pi ^2+\alpha ^4 \Pi ^4\right) \right) \right) \end{aligned}$$
(75)

1.1.2 Asymptotic analysis \((H\rightarrow \infty )\)

In this case, \(R_{D}\) takes the form

$$\begin{aligned} \begin{aligned} R_D&=\frac{\delta ^2}{a^2}\left( \frac{\left( \delta ^2(1-\gamma )-Q_s\right) }{\gamma }-\frac{\left( \delta ^4-2 Q_s\delta ^2+\text {Qs}^2-a^2 \alpha ^2 \Pi ^2\right) }{ \gamma ^2 H}\right. \\&\quad \left. +\frac{\left( \delta ^2-Q_s\right) \left( \left( \delta ^2-Q_s\right) {}^2-3 a^2\alpha ^2 \Pi ^2\right) }{\gamma ^3 H^2}.....\right) \end{aligned} \end{aligned}$$
(76)

Minimizing \(R_{D}\) given by Eq. (76) with respect to a, and equating \(\dfrac{\partial R_{D}}{\partial a}=0\), we get an expression as follows:

$$\begin{aligned} \begin{aligned}&2\gamma ^{-1} \left( a^4 (1+\gamma )-\pi ^2 \left( -Q_s+\pi ^2 (1+\gamma )\right) \right) \gamma ^{-1}+2 \gamma ^{-2}H^{-1}\left( -2 a^6+\left( \pi ^3-\pi Q_s\right) ^2\right. \\&\quad +\left. a^4 \left( -3 \pi ^2+2 Q_s+\alpha ^2 \Pi ^2\right) \right) +2 \gamma ^{-3}H^{-2}\left( a^2+\pi ^2-Q_s\right) ^2 \left( 3 a^4+2 a^2 \pi ^2-\pi ^4+\pi ^2 Q_s\right) \\&\quad +6 a^4 \left( -2 \left( a^2+\pi ^2\right) +Q_s\right) \alpha ^2 \Pi ^2=0. \end{aligned} \end{aligned}$$
(77)

Similarly, a for large values of H takes the form:

$$\begin{aligned} a=a_0+a_1H^{-1}+a_2H^{-2}, \end{aligned}$$
(78)

where

$$\begin{aligned} a_{0}^{2} = \frac{\pi \sqrt{\left( -Q_s+\pi ^2 (1+\gamma )\right) }}{\sqrt{(1+\gamma )}}, \end{aligned}$$
(79)

and

$$\begin{aligned} a_1=\frac{\delta _{0}^{2} \left( \left( \delta _{0}^{2}-Q_s\right) ^2-a_{0}^{2} \alpha ^2 \Pi ^2\right) }{2 a_0 \gamma \left( -Q_s+2 \delta _{0}^{2}(1+\gamma )\right) },\;\;\ a_2=\frac{\Delta _{24}}{\Delta _{23}}, \end{aligned}$$
(80)

where

$$\begin{aligned} \Delta _{23}&=2 a_0 \gamma \left( -Q_s+2 \delta _{0}^{2}(1+\gamma )\right) \\ \Delta _{24}&=\left( -a_{0}^{8}-\pi ^2 \left( \pi ^2-Q_s\right) ^3+6 a_{0}^{5} a_1 \gamma +a_{1}^{2} \left( -2 \pi ^2+Q_s\right) \gamma ^2-2 a_1{}^2 \pi ^2 \gamma ^3+4 a_0{}^3 a_1 \gamma \right. \\ &\qquad \left. \times \left( 3 \pi ^2-2 Q_s-\alpha ^2 \Pi ^2\right) -3 a_0{}^4 \left( 2 \pi ^2-Q_s\right) \left( \pi ^2-Q_s-\alpha ^2 \Pi ^2\right) +a_0{}^6 \left( -4 \pi ^2+3 \left( Q_s+\alpha ^2 \Pi ^2\right) \right) \right. \\ &\qquad \left. +2 a_0 a_1 \gamma \left( 3 \pi ^4+Q_s{}^2-\pi ^2 \left( 4 Q_s+\alpha ^2 \Pi ^2\right) \right) +a_0{}^2 \left( -6 a_1{}^2 \gamma ^2 (1+\gamma )-\left( \pi ^2-Q_s\right) \right. \right. \\ &\qquad \left.\times \left. \left( 4 \pi ^4+Q_s{}^2-\pi ^2 \left( 5 Q_s+3 \alpha ^2 \Pi ^2\right) \right) \right) \right) \end{aligned}$$

1.1.3 Asymptotic analysis \((\gamma \rightarrow \infty )\)

In this case, \(R_{D}\) takes the form

$$\begin{aligned} R_D=\frac{\delta ^4}{a^2}\left( 1+\frac{\left( \delta ^2-Q_s\right) }{\delta ^2\gamma }-\frac{\left( \delta ^4-2 \delta ^2 Q_s+Q_s^2-a^2 \alpha ^2 \Pi ^2\right) }{\delta ^2H \gamma ^2}.......\right) . \end{aligned}$$
(81)

Minimizing \(R_{D}\) given by Eq. (81) with respect to a and by equating \(\dfrac{\partial R_{D}}{\partial a}=0\), we get

$$\begin{aligned}{} & {} 2\left( a^4-\pi ^4\right) +2 \gamma ^{-1}\left( a^4-\pi ^4+\pi ^2 Q_s\right) +2 H^{-1} \gamma ^{-2}\left( -2 a^6+\left( \pi ^3-\pi Q_s\right) ^2\right. \nonumber \\{} & {} \quad \left. +a^4 \left( -3 \pi ^2+2 Q_s+\alpha ^2 \Pi ^2\right) \right) =0 \end{aligned}$$
(82)

Similarly, a for large values of \(\gamma\) takes the form:

$$\begin{aligned} a=a_0+a_1\gamma ^{-1}+a_2\gamma ^{-2} \end{aligned}$$
(83)

where

$$\begin{aligned} a_{0}^{2}=\pi ^2,\;\;\ a_1=\frac{Q_s-\delta _{0}^{2}}{4 a_0},\;\;\ a_2=\frac{\Delta _{25}}{4 a_0 H \delta _{0}^{2}}, \end{aligned}$$
(84)

where

$$\begin{aligned} \Delta _{25} & = a_{0}^{6}-4 a_{0}^{3} a_1 H+\pi ^2 \left( -2 a_{1}^{2} H+\left( \pi ^2-Q_s\right) ^2\right) +2 a_0a_1 H \left( -2 \pi ^2+Q_s\right) +a_{0}^{4} \left( 3 \pi ^2-2 Q_s-\alpha ^2 \Pi ^2\right) \nonumber \\{} & {} +a_{0}^{2} \left( -6 a_1{}^2 H+3 \pi ^4+Q_s^2-\pi ^2 \left( 4 Q_s+\alpha ^2 \Pi ^2\right) \right) . \end{aligned}$$
(85)

Appendix C

This section involves the asymptotic analysis in case of \(H\rightarrow 0\), \(H\rightarrow \infty\) and \(\gamma \rightarrow \infty\) for the existence of heat source in the fluid phase by nonlinear stability analysis (see Sect. (4.1.1)). (47) is expanded in powers of H, \(\dfrac{1}{H}\) and \(\dfrac{1}{\gamma }\) for the particular cases of \(H\rightarrow 0\), \(H\rightarrow \infty\) and \(\gamma \rightarrow \infty\), respectively.

1.1 Nonlinear stability analysis

1.1.1 Existence of heat source in fluid phase

1.1.2 Asymptotic analysis \((H\rightarrow 0)\)

In this case, \(Nu_{w}\) takes the form:

$$\begin{aligned} Nu_{w}=G_{1}+G_{2}H+G_{3}H^{2}+..., \end{aligned}$$
(86)

where \(\delta _{0}^{2}=a_{0}^{2}+\pi ^{2}\),

$$\begin{aligned} G_1&=1-\frac{2 \left( \delta _{0}^{2} \left( \delta _{0}^{2}-Q_f\right) -a_{0}^{2} R_D\right) \epsilon }{a_{0}^2 R_D}, \end{aligned}$$
(87)
$$\begin{aligned} G_2&=\frac{1}{2 a_{0}^{3} \pi ^2 R_D}\left( a_{0}^{5} \gamma (-1+\epsilon )-8 a_{0}^{4} a_1 \pi ^2 \epsilon +8 a_1 \pi ^4 \left( \pi ^2-Q_f\right) \epsilon +a_0 \pi ^2 \left( -Q_f \gamma (-1+\epsilon )+\pi ^2\right. \right. \nonumber \\&\quad \left. \left. (-\gamma +(-4+\gamma ) \epsilon )\right) +a_{0}^{3} \left( -\left( Q_f+R_D\right) \gamma (-1+\epsilon )+2 \pi ^2 (-\gamma +(-2+\gamma ) \epsilon )\right) \right) , \end{aligned}$$
(88)
$$\begin{aligned} G_3&=\frac{1}{8 a_{0}^{4} \pi ^4 R_D}\left( -a_{0}^{6} \gamma ^2 (-1+\epsilon )+48 a_{1}^{2}\pi ^6 \left( -\pi ^2+Q_f\right) \epsilon +a_{0}^{4} \left( -2 \pi ^2 (-2+\gamma ) \gamma (-1+\epsilon )\right. \right. \nonumber \\&\quad \left. \left. +\left( Q_f+R_D\right) \gamma ^2 (-1+\epsilon )-16 a_{1}^{2} \pi ^4\epsilon \right) -8 a_{0}^{5} \pi ^2 \left( 4 a_2\pi ^2\epsilon +a_1(\gamma -\gamma \epsilon )\right) +a_{0}^{2} \pi ^2 \gamma \left( Q_f\gamma (-1+\epsilon )\right. \right. \nonumber \\&\quad \left. \left. +\pi ^2 (-4+\gamma +20 \epsilon -\gamma \epsilon )\right) +8 a_0 \pi ^4 \left( 4 a_2 \pi ^2 \left( \pi ^2-Q_f\right) \epsilon +a_1\left( \text {Qf} \gamma (-1+\epsilon )+\pi ^2 (\gamma +4 \epsilon -\gamma \epsilon )\right) \right) \right) . \end{aligned}$$
(89)

1.1.3 Asymptotic analysis \((H\rightarrow \infty )\)

In this case, \(Nu_{w}\) takes the form:

$$\begin{aligned} Nu_{w}=G_{4}+G_{5}\frac{1}{H}+G_{6}\frac{1}{H^{2}}+..., \end{aligned}$$
(90)

where \(\delta _{0}^{2}=a_{0}^{2}+\pi ^{2}\),

$$\begin{aligned} G_4&=\frac{\left( 3 a_{0}^{2} R_D-2 \delta _{0}^{2} \left( \delta _{0}^{2}-Q_f\right) \right) \gamma -2 \delta _{0}^{4}}{a_{0}^{2} R_D \gamma },\end{aligned}$$
(91)
$$\begin{aligned} G_5&=\frac{1}{a_{0}^{3} R_D \gamma ^2}\left( 2 \left( a_{0}^{7}-2 a_{0}^{4} a_1\gamma (1+\gamma )+2 a_1 \pi ^2 \gamma \left( -Q_f \gamma +\pi ^2 (1+\gamma )\right) +a_{0}^{5} \pi ^2 (7+4 \gamma \right. \right. \nonumber \\&\quad \left. \left. -4 (1+\gamma ) \epsilon )+a_{0}^{3} \pi ^2 \left( 4 \left( Q_f+R_D\right) \gamma (-1+\epsilon )+\pi ^2 (11+8 \gamma -8 (1+\gamma ) \epsilon )\right) +a_0\pi ^4 \right. \right. \nonumber \\&\quad \left. \left. \left( 4 Q_f \gamma (-1+\epsilon )+\pi ^2 (5+4 \gamma -4 (1+\gamma ) \epsilon )\right) \right) \right) , \end{aligned}$$
(92)
$$\begin{aligned} G_6&=\frac{1}{a_{0}^{4} R_D \gamma ^3}2 \left( 4 a_{0}^{7} a_1 \gamma -a_{0}^{10}-3 a_1{}^2 \pi ^2 \gamma ^2 \left( -Q_f \gamma +\pi ^2 (1+\gamma )\right) +4 a_{0}^{8} \pi ^2 (-2+\epsilon )\right. \nonumber \\ & \quad \ \left. -2 a_{0}^{6} \pi ^4 (17+8 \gamma -2 (7+4 \gamma ) \epsilon )-a_{0}^{4} \left( a_{1}^{2} \gamma ^2 (1+\gamma )+16 \pi ^4 \left( Q_f+R_D\right) \gamma (-1+\epsilon )\right. \right. \nonumber \\&\quad \ \left. \left. +4 \pi ^6 (12+8 \gamma -11 \epsilon -8 \gamma \epsilon )\right) -2 a_{0}^{5} \gamma \left( a_2 \gamma (1+\gamma )+a_1 \pi ^2 (-7-4 \gamma +4 (1+\gamma ) \epsilon )\right) \right. \nonumber \\&\quad \ \left. -a_{0}^{2} \pi ^6 \left( 16 Q_f \gamma (-1+\epsilon )+\pi ^2 (21+16 \gamma -4 (5+4 \gamma ) \epsilon )\right) +2 a_0\pi ^2 \gamma \left( a_2 \gamma \left( -Q_f \gamma \right. \right. \right. \nonumber \\&\quad \left. \left. \left. +\pi ^2 (1+\gamma )\right) +a_1 \pi ^2 \left( -4 Q_f \gamma (-1+\epsilon )+\pi ^2 (-5-4 \gamma +4 (1+\gamma ) \epsilon )\right) \right) \right) . \end{aligned}$$
(93)

1.1.4 Asymptotic analysis \((\gamma \rightarrow \infty )\)

In this case, \(Nu_{w}\) takes the form:

$$\begin{aligned} Nu_{w}=G_{7}+G_{8}\frac{1}{\gamma }+G_{9}\frac{1}{\gamma ^{2}}+..., \end{aligned}$$
(94)

where \(\delta _{0}^{2}=a_{0}^{2}+\pi ^{2}\),

$$\begin{aligned} G_7&=3-\frac{2 \delta _{0}^{2}\left( \delta _{0}^{2}-Q_f\right) }{a_{0}^{2} R_D} \end{aligned}$$
(95)
$$\begin{aligned} G_8&=\frac{1}{a_{0}^{3} H R_D}\left( 2 \left( 2 a_1 H \pi ^2 \left( \pi ^2-Q_f\right) -2 a_0{}^4 a_1 H-a_{0}^{5} \left( H+4 \pi ^2 (-1+\epsilon )\right) -a_0 \pi ^4 \left( H+ \right. \right. \right. \nonumber \\&\quad \left. \left. \left. 4 \left( \pi ^2-Q_f\right) (-1+\epsilon )\right) -2 a_{0}^{3} \pi ^2 \left( H+2 \left( 2 \pi ^2-Q_f-R_D\right) (-1+\epsilon )\right) \right) \right) \end{aligned}$$
(96)
$$\begin{aligned} G_9&=\frac{1}{a_{0}^{4} H^2 R_D}2 \left( a_{0}^{8} H+3 a_{1}^{2} H^2 \pi ^2 \left( -\pi ^2+Q_f\right) -2 a_{0}^{5} H \left( a_2H+a_1\left( H+4 \pi ^2 (-1+\epsilon )\right) \right) \right. \nonumber \\&\quad \ \left. +2 a_0 H \pi ^2 \left( a_2H \left( \pi ^2-Q_f\right) +a_1 \pi ^2 \left( H+4 \left( \pi ^2-Q_f\right) (-1+\epsilon )\right) \right) +a_{0}^{4} \left( -a_{1}^{2} H^2+\pi ^4 \right. \right. \nonumber \\ &\quad \ \left. \left. \left( H (11-8 \phi )+16 \left( 2 \pi ^2-Q_f-R_D\right) (-1+\epsilon )\right) \right) +a_{0}^{6} \pi ^2 \left( H (7-4 \epsilon )+16 \pi ^2 (-1+\epsilon )\right) \right. \nonumber \\&\quad \ \left. +a_0{}^2 \pi ^6 \left( H (5-4 \phi )+16 \left( \pi ^2-Q_f\right) (-1+\epsilon )\right) \right. \end{aligned}$$
(97)

Appendix D

This section involves the asymptotic analysis in case of \(H\rightarrow 0\), \(H\rightarrow \infty\) and \(\gamma \rightarrow \infty\) for the existence of heat source in the fluid phase by nonlinear stability analysis (see Sect. (4.1.2)). (56) is expanded in powers of H, \(\dfrac{1}{H}\) and \(\dfrac{1}{\gamma }\) for the particular cases of \(H\rightarrow 0\), \(H\rightarrow \infty\) and \(\gamma \rightarrow \infty\), respectively.

1.1 Existence of heat source in solid phase

1.1.1 Asymptotic analysis \((H\rightarrow 0)\)

In this case, \(Nu_{w}\) takes the form:

$$\begin{aligned} Nu_{w}=M_{1}+M_{2}H+M_{3}H^{2}+..., \end{aligned}$$
(98)

where \(\delta _{0}^{2}=a_{0}^{2}+\pi ^{2}\),

$$\begin{aligned} M_1&=1-\frac{2 \left( \delta _c^4-a_0^2 R_D\right) \epsilon }{a_0^2 R_D}, \end{aligned}$$
(99)
$$\begin{aligned} M_2&=\frac{1}{2 a_0^3 \pi ^2 R_D}\left( a_0 \left( 1+Q_s\right) \left( \delta _c^4-a_0^2 R_D\right) \gamma -\left( 4 a_0^3 \pi ^2+8 a_0^4 a_1 \pi ^2+4 a_0 \pi ^4-8 a_1 \pi ^6+a_0(1+\text {Qs})\right. \right. \nonumber \\&\quad \left. \left. \left( \delta _c^4-a_0^2 R_D\right) \gamma \right) \epsilon \right) , \end{aligned}$$
(100)
$$\begin{aligned} M_3&=\frac{1}{8 a_0^4 \pi ^4 R_D}\left( a_0^6\left( 1+Q_s\right) \gamma ^2 (-1+\epsilon )-48 a_1^2\pi ^8 \epsilon +a_0^2 \pi ^4 \left( 1+Q_s\right) \gamma (4+\gamma (-1+\epsilon )+12 \epsilon )\right. \nonumber \\&\quad \left. -8 a_0^5 \pi ^2 \left( a_1\left( 1+Q_s\right) \gamma (-1+\epsilon )+4 a_2 \pi ^2 \epsilon \right) +a_0^4 \left( 2 \pi ^2 \left( 1+Q_s\right) (-2+\gamma ) \gamma (-1+\epsilon )\right. \right. \nonumber \\&\quad \left. \left. -\left( 1+Q_s\right) R_D \gamma ^2 (-1+\epsilon )-16 a_1^2 \pi ^4 \epsilon \right) +8 a_0 \pi ^6 \left( 4 a_2 \pi ^2\epsilon +a_1\left( \left( 1+Q_s\right) \gamma (-1+\epsilon )+4 \epsilon \right) \right) \right) \end{aligned}$$
(101)

1.1.2 Asymptotic analysis \((H\rightarrow \infty )\)

In this case, \(Nu_{w}\) takes the form:

$$\begin{aligned} Nu_{w}=M_{4}+M_{5}\frac{1}{H}+M_{6}\frac{1}{H^{2}}+..., \end{aligned}$$
(102)

where \(\delta _{0}^{2}=a_{0}^{2}+\pi ^{2}\),

$$\begin{aligned} M_4&=\frac{1}{a_0^3 R_D \gamma }\left( 4 a_1 \pi ^2 Q_s \gamma \left( -1+Q_s(-1+\epsilon )\right) +2a_0^5 \left( 1+Q_s+\gamma \right) \left( -1+Q_s (-1+\epsilon )\right) +2 a_0 \pi ^4\right. \nonumber \\&\quad \left. \left( -\left( 1+Q_s\right) \left( 1+5 Q_s+\gamma \right) +Q_s \left( 5+5 Q_s+\gamma \right) \epsilon \right) +a_0^3 \left( R_D \gamma \left( 3+2 Q_s-2 Q_s\epsilon \right) +4 \pi ^2\right. \right. \nonumber \\&\quad \left. \left. \left( -\left( 1+Q_s\right) \left( 1+3 Q_s+\gamma \right) +Q_s \left( 3+3 Q_s+\gamma \right) \epsilon \right) \right) \right) ,\end{aligned}$$
(103)
$$\begin{aligned} M_5&=\frac{1}{a_0^4R_D \gamma ^2}2 \left( -a_0^8 \left( 1+Q_s\right) \left( -1+Q_s (-1+\epsilon )\right) +2 a_0^5 a_1 \gamma \left( 1+Q_s+\gamma \right) \left( -1+Q_s(-1+\epsilon )\right) \right. \nonumber \\&\quad \left. +3 a_1^2 \pi ^2 Q_s \gamma ^2 \left( 1+Q_s-Q_s \epsilon \right) -a_0^6 \pi ^2 \left( 1+Q_s\right) \left( -7-4 \gamma +7 Q_s (-1+\epsilon )+4 (1+\gamma ) \epsilon \right) -a_0^2 \pi ^6\right. \nonumber \\&\quad \left. \left( 1+Q_s\right) \left( -5-4 \gamma +21 Q_s (-1+\epsilon )+4 (1+\gamma ) \epsilon \right) -a_0^4 \pi ^2 \left( 1+Q_s\right) \left( -4 R_D \gamma (-1+\epsilon )+\pi ^2 \right. \right. \nonumber \\&\quad \left. \left. \left( -11-8 \gamma +27 Q_s (-1+\epsilon )+8 (1+\gamma ) \epsilon \right) \right) +2 a_0 \pi ^2 \gamma \left( a_2 Q_s \gamma \left( -1+Q_s (-1+\epsilon )\right) +a_1 \pi ^2\right. \right. \nonumber \\&\quad \left. \left. \left( 1+\gamma +Q_s \left( 6+5 Q_s+\gamma -\left( 5+5 Q_s+\gamma \right) \epsilon \right) \right) \right) \right) , \end{aligned}$$
(104)
$$\begin{aligned} M_6&=-\frac{1}{a_0^5 R_D \gamma ^3}2 \left( -a_0^{11} \left( 1+Q_s\right) \left( -1+Q_s (-1+\epsilon )\right) +4a_0^8 a_1 \left( 1+Q_s\right) \gamma \left( -1+Q_s(-1+\epsilon )\right) \right. \nonumber \\&\quad \left. -4a_0^9 \pi ^2 \left( 1+Q_s\right) \left( -2+2 Q_s (-1+\epsilon )+\epsilon \right) -2 a_0^7\pi ^4 \left( 1+Q_s\right) \left( -17+17 Q_s (-1+\epsilon )+8 \right. \right. \gamma \nonumber \\&\quad \left. \left. (-1+\epsilon )+14 \epsilon \right) -a_0^3 \pi ^8 \left( 1+Q_s\right) \left( -21+85 Q_s(-1+\epsilon )+16 \gamma (-1+\epsilon )+20 \epsilon \right) +4 a_1^3 \pi ^2 Q_s \gamma ^3 \right. \nonumber \\&\quad \left. \left( 1+Q_s-Q_s \epsilon \right) +a_0^5 \left( -a_1^2 \gamma ^2 \left( 1+Q_s+\gamma \right) \left( -1+Q_s(-1+\epsilon )\right) +16 \pi ^4 \left( 1+Q_s\right) R_D \gamma \right. \right. \nonumber \\&\quad \left. \left. (-1+\epsilon )-4 \pi ^6 \left( 1+Q_s\right) \left( -12+28 Q_s(-1+\epsilon )+8 \gamma (-1+\epsilon )+11 \epsilon \right) \right) +2 a_0^6 \gamma \left( -a_2 \gamma \right. \right. \nonumber \\&\quad \left. \left. \left( 1+Q_s+\gamma \right) \left( -1+Q_s(-1+\epsilon )\right) +a_1\pi ^2 \left( 1+Q_s\right) \left( -7-4 \gamma +7 Q_s (-1+\epsilon )+4 (1+\gamma ) \epsilon \right) \right) \right. \nonumber \\&\quad \left. -3 a_0 a_1 \pi ^2 \gamma ^2 \left( 2 a_2Q_s \gamma \left( 1+Q_s-Q_s \epsilon \right) +a_1 \pi ^2 \left( -\left( 1+Q_s\right) \left( 1+5 Q_s+\gamma \right) +Q_s\left( 5+5 Q_s+\right. \right. \right. \right. \nonumber \\&\quad \left. \left. \left. \left. \gamma \right) \epsilon \right) \right) -2 a_0^2 \pi ^4 \gamma \left( a_1 \pi ^2 \left( 1+Q_s\right) \left( -5-4 \gamma +21 Q_s (-1+\epsilon )+4 (1+\gamma ) \epsilon \right) +a_2 \gamma \left( 1+\gamma +Q_s \right. \right. \right. \nonumber \\&\quad \left. \left. \left. \left( 6+5 Q_s+\gamma -\left( 5+5 Q_s+\gamma \right) \epsilon \right) \right) \right) \right) . \end{aligned}$$
(105)

1.1.3 Asymptotic analysis \((\gamma \rightarrow \infty )\)

In this case, \(Nu_{w}\) takes the form:

$$\begin{aligned} Nu_{w}=M_{7}+M_{8}\frac{1}{\gamma }+M_{9}\frac{1}{\gamma ^{2}}+..., \end{aligned}$$
(106)

where \(\delta _{0}^{2}=a_{0}^{2}+\pi ^{2}\),

$$\begin{aligned} \begin{aligned} M_7=1+\frac{2 \left( \delta _0^2 \left( \delta _0^2-H Q_s\right) -a_0^2 R_D\right) \left( -1+Q_s (-1+\epsilon )\right) }{a_0^2 R_D}, \end{aligned} \end{aligned}$$
(107)
$$\begin{aligned} \begin{aligned} M_8&=\frac{1}{a_0^3 R_DH}\left( 2 \left( 2 a_1H \left( a_0^4-\pi ^4+H \pi ^2 Q_s\right) \left( -1+Q_s (-1+\epsilon )\right) +a_0 \left( 1+Q_s\right) \left( -\pi ^4 \left( 4 \pi ^2\right. \right. \right. \right. \\ &\qquad \left. \left. \left. \left. (-1+\epsilon )+H \left( 1+5 Q_s-5 Q_s\epsilon \right) \right) -2 a_0^2 \pi ^2 \left( 2 \left( 2 \pi ^2-R_D\right) (-1+\epsilon )+H \left( 1+3 Q_s-3 Q_s\epsilon \right) \right) \right. \right. \right. \\ & \qquad \left. \left. \left. -a_0^4 \left( 4 \pi ^2 (-1+\epsilon )+H \left( 1+Q_s-Q_s\epsilon \right) \right) \right) \right) \right) , \end{aligned} \end{aligned}$$
(108)
$$\begin{aligned} \begin{aligned} M_9&=\frac{1}{a_0^4R_D}2 ((a_0^4 a_1^2+2 a_0^5 a_2+3 a_1^4 \pi ^4-2 a_0 a_2 \pi ^4+(-3 a_1^4+2 a_0 a_2) H \pi ^2 Q_s) (-1+Q_s \\&\qquad (-1+\epsilon ))-1/H^2a_0^4(1+Q_s) (a_0^6 H (-1+Q_s (-1+\epsilon ))+a_0^4 \pi ^2 (-16 \pi ^2 (-1+\epsilon )+H\\ & \qquad (-7+7 Q_s (-1+\epsilon )+4\epsilon ))+\pi ^6 (-16 \pi ^2 (-1+\epsilon )+H (-5+21 Q_s (-1+\epsilon )+4 \epsilon ))+a_0^2\pi ^4\\& \qquad (-16 (2 \pi ^2-R_D) (-1+\epsilon )+H (-11+27 Q_s (-1+\epsilon )+8 \epsilon )))+2H^{-1} a_0 a_1 (1+Q_s)\\&(\pi ^4 (4 \pi ^2 (-1+\epsilon )+H (1+5 Q_s-5 Q_s\epsilon ))-a_0^4 (4 \pi ^2 (-1+\epsilon )+H (1+Q_s-Q_s\epsilon )))). \end{aligned} \end{aligned}$$
(109)

Appendix E

This section is concerned with obtaining the amplitudes of convection for the existence of heat source in the fluid phase by weakly nonlinear stability analysis by solving the algebraic Eqs. (40)–(44) (see Sect. (4.1.1)).

1.1 Weakly nonlinear stability analysis

1.1.1 Existence of heat source in the fluid phase

The amplitudes of convection are:

$$\begin{aligned} B= & {} \frac{a_cF_1A}{r \left( \delta _{c}^{4} \left( \delta _{c}^{2}+H-Q_f\right) +H \delta _{c}^{2}F_2\gamma +H^2 \left( \delta _{c}^{2}-Q_f\right) \gamma ^2+a_{c}^{2} F_2\alpha ^2 \Pi ^2\right) }, \end{aligned}$$
(110)
$$\begin{aligned} B_1= & {} -\frac{\pi \left( 4 \pi ^2+H \gamma \right) a_{c}^{2} F_1A^2 }{4 r \left( 16 \pi ^4-4 \pi ^2 Q_f+H F_6\right) \left( \delta _{c}^{4} F_3+H \delta _{c}^{2}F_4\gamma +H^2 F_5\gamma ^2+a_{c}^{2} F_3 \alpha ^2 \Pi ^2\right) }, \end{aligned}$$
(111)
$$\begin{aligned} C= & {} \frac{a_c H \gamma F_1A }{r F_2\left( \delta _{c}^{4} F_3+H \delta _{c}^{2}F_4\gamma +H^2 F_5\gamma ^2+a_{c}^{2} F_3\alpha ^2 \Pi ^2\right) }, \end{aligned}$$
(112)
$$\begin{aligned} C_1= & {} -\frac{H \gamma \pi a_{c}^{2} F_1A^2 }{4 r \left( 16 \pi ^4-4 \pi ^2 Q_f+H F_6\right) \left( \delta _{c}^{4} F_3+H \delta _{c}^{2}F_4\gamma +H^2 F_5\gamma ^2+a_{c}^{2} F_3 \alpha ^2 \Pi ^2\right) }, \end{aligned}$$
(113)
$$\begin{aligned}{} & {} \left. \begin{array}{l} F_1=\left( \left( \delta _{c}^{2}+H \gamma \right) ^2+a_{c}^{2} \alpha ^2 \Pi ^2\right) ,\\ F_2= \left( \delta _{c}^{2}+H \gamma \right) ,\\ F_3=\left( \delta _{c}^{2}+H-Q_f\right) ,\\ F_4=\left( 2 \delta _{c}^{2}+H-2 Q_f\right) ,\\ F_5=\left( \delta _{c}^{2}-Q_f\right) ,\\ F_6=\left( -Q_f \gamma +4 \pi ^2 (1+\gamma )\right) \end{array} \right\} , \end{aligned}$$
(114)
$$\begin{aligned} A^2= & {} \frac{4 r \left( 16 \pi ^4+H F_6-4 \pi ^2 Q_f\right) \left( H \gamma \left( H \gamma F_5+F_4 \delta _c^2\right) +F_3 \left( \alpha ^2 \Pi ^2 a_c^2+\delta _c^4\right) \right) }{\pi ^2 \left( 4 \pi ^2+H \gamma \right) a_c^2 F_1}\nonumber \\{} & {} \quad \left( 1-\frac{F_1 \left( F_2 F_3-H^2 \gamma \right) }{r F_2 \left( H \gamma \left( H \gamma F_5+F_4 \delta _c^2\right) +F_3 \left( \alpha ^2 \Pi ^2 a_c^2+\delta _c^4\right) \right) }\right) , \end{aligned}$$
(115)

Appendix F

This section is concerned with obtaining the amplitudes of convection for the existence of heat source in the solid phase by weakly nonlinear stability analysis by solving the algebraic Eqs. (49)–(53) (see Sect. (4.1.2)).

1.1 Existence of heat source in the solid phase

The amplitudes of convection are:

$$\begin{aligned} B= & {} \frac{A E_1}{a_c r \left( H^2 \gamma ^2 \delta _c^2+E_3+E_4\right) }, \end{aligned}$$
(116)
$$\begin{aligned} B_1= & {} \frac{A^2 \pi \left( 4 \pi ^2+H \gamma \right) E_1}{4 r \left( H^2 \gamma ^2 \delta _c^2+E_3+E_4 E_2\right) }, \end{aligned}$$
(117)
$$\begin{aligned} C= & {} \frac{A H \gamma E_1 \left( 1+Q_s\right) }{a_c r \left( H \gamma +\delta _c^2\right) \left( H^2 \gamma ^2 \delta _c^2+E_3+E_4\right) }, \end{aligned}$$
(118)
$$\begin{aligned} C_1= & {} \frac{A^2 H \pi \gamma E_1 \left( 1+Q_s\right) }{4 r \left( H^2 \gamma ^2 \delta _c^2+E_3+E_4E_2\right) }, \end{aligned}$$
(119)
$$\begin{aligned}{} & {} \left. \begin{array}{l} E_1=\left( a_c^4 \alpha ^2 \Pi ^2+a_c^2 \left( H \gamma +\delta _c^2-Q_s\right) {}^2\right) ,\\ E_2=\left( -4 \pi ^2 \left( H+4 \pi ^2+H \gamma \right) +H^2 \gamma Q_s\right) ,\\ E_3=a_c^2 \alpha ^2 \left( H+\delta _c^2\right) \Pi ^2+H \gamma \left( H+2 \delta _c^2\right) \left( \delta _c^2-Q_s\right) ,\\ E_4=\left( H+\delta _c^2\right) \left( \delta _c^2-Q_s\right) {}^2\\ \end{array} \right\} .\end{aligned}$$
(120)
$$\begin{aligned} A^2= & {} \frac{4 \left( -16 \pi ^4+H^2 Q_s \gamma -4 H \pi ^2 (1+\gamma )\right) }{a^2 \pi ^2 \delta _c^2 \left( 4 \pi ^2+H \gamma \right) E_1}*\left( \delta _c^2 \left( \delta _c^2 \left( \delta _c^2+H\right) +H \left( \delta _c^2-H \text {Qs}\right) \gamma \right) E_1 \right. \nonumber \\{} & {} \quad \left. -\text {ra}^2\delta _c^2 \left( \alpha ^2 \Pi ^2 a_c^2 \left( H+\delta _c^2\right) +\left( H \gamma -Q_s+\delta _c^2\right) \left( -Q_s \left( H+\delta _c^2\right) +\delta _c^2 \left( H+H \gamma +\delta _c^2\right) \right) \right) \right) . \end{aligned}$$
(121)
Fig. 1
figure 1

Schematic representation

Fig. 2
figure 2

Variation of a \(R_{Dc}\) and b \(a_{c}\) with \(\Pi\), in the presence of fluid heat source for various values of H and \(\gamma\) when \(Q_{f}=2\)

Fig. 3
figure 3

Variation of a \(R_{Dc}\) and b \(a_{c}\) with \(\Pi\), in the presence of solid internal heat source for various values of H and \(\gamma\) when \(Q_{s}=2\)

Fig. 4
figure 4

Variation of \(R_{Dc}\) with \(\log _{10}H\), in the existence of fluid heat source for different values of a \(\gamma\) when \(\Pi =5\) and b) \(\Pi\) when \(\gamma =1\) with \(\alpha =0.5\) and \(Q_{f}=1\), (c) \(Q_{f}\) when \(\Pi =5, \gamma =1\) and \(\alpha =0.5\)

Fig. 5
figure 5

Variation of \(a_{c}\) with \(\log _{10}H\), in the existence of fluid heat source for different values of a \(\gamma\) when \(\Pi =5\) and b \(\Pi\) when \(\gamma =1\) with \(\alpha =0.5\) and \(Q_{f}=1\), c \(Q_{f}\) when \(\Pi =5, \gamma =1\) and \(\alpha =0.5\)

Fig. 6
figure 6

Variation of \(R_{Dc}\) with \(\log _{10}H\), in the existence of solid heat source for different values of a \(\gamma\) when \(\Pi =5\) and b \(\Pi\) when \(\gamma =1\) with \(\alpha =0.5\) and \(Q_{s}=1\), c \(Q_{s}\) when \(\Pi =5, \gamma =1\) and \(\alpha =0.5\)

Fig. 7
figure 7

Variation of \(a_{c}\) with \(\log _{10}H\), in the existence of solid heat source for different values of a \(\gamma\) when \(\Pi =5\) and b \(\Pi\) when \(\gamma =1\) with \(\alpha =0.5\) and \(Q_{s}=1\), c \(Q_{s}\) when \(\Pi =5, \gamma =1\) and \(\alpha =0.5\)

Fig. 8
figure 8

Variation of \(R_{Dc}\) with a \(Q_{f}\) and b \(Q_{s}\) for various values of \(\Pi\) when \(H=10, \gamma =1\) and \(\alpha =0.5\)

Fig. 9
figure 9

Variation of \(Nu_{w}\) with \(R_{D}\) in the existence of fluid heat source a H with \(\gamma =0.1, Q_{f}=1, \alpha =0.5, \epsilon =0.4\) and \(\Pi =2\) and b \(\gamma\) with \(H=10\), \(Q_{f}=1, \alpha =0.5, \epsilon =0.4\) and \(\Pi =2\), c \(\Pi\) with \(Q_{f}=1\), \(H=100, \epsilon =0.4, \gamma =1\) and \(\alpha =0.5\) and d \(Q_{f}\) with \(\Pi =2\), \(H=10, \epsilon =0.4, \gamma =0.1\) and \(\alpha =0.5\)

Fig. 10
figure 10

Variation of \(Nu_{w}\) with \(R_{D}\) in the existence of solid heat source a H with \(\gamma =0.1\), \(Q_{s}=1, \alpha =0.5, \epsilon =0.4\) and \(\Pi =2\) and b \(\gamma\) with \(H=10\), \(Q_{s}=1, \alpha =0.5, \epsilon =0.4\) and \(\Pi =2\), c \(\Pi\) with \(Q_{s}=1\), \(H=10, \epsilon =0.4, \gamma =10\) and \(\alpha =0.5\), and d \(Q_{s}\) with \(\Pi =2\) when \(H=10, \epsilon =0.4, \gamma =0.1\) and \(\alpha =0.5\)

Fig. 11
figure 11

Variation of \(Nu_{w}\) with \(R_{D}\) for small values of H with a Fluid internal heat source when \(\gamma =0.1\), \(\alpha =0.5, \epsilon =0.4, Q_{f}=1\) and \(\Pi =2\) and b Solid internal heat source when \(\gamma =0.1\), \(Q_{s}=1, \alpha =0.5, \epsilon =0.4\) and \(\Pi =2\)

Fig. 12
figure 12

Variation of \(Nu_{w}\) with \(R_{D}\) for large values of H with a Fluid internal heat source when \(\gamma =2\), \(\alpha =0.5, \epsilon =0.4, Q_{f}=1\) and \(\Pi =20\) and b Solid internal heat source when \(\gamma =20\), \(Q_{s}=1, \alpha =0.5, \epsilon =0.4\) and \(\Pi =200\)

Fig. 13
figure 13

Variation of \(Nu_{w}\) with \(R_{D}\) for large values of \(\gamma\) with a Fluid internal heat source when \(H=20\), \(\alpha =0.5, \epsilon =0.4, Q_{f}=1\) and \(\Pi =2\) and b Solid internal heat source when \(H=3\), \(Q_{s}=1, \alpha =0.5, \epsilon =0.4\) and \(\Pi =5\)

Table 1 Exact and asymptotic values of critical Darcy–Rayleigh \((R_{Dc})\) for different values of \(Q_{f}\) and small values of H for \(\gamma =1, \alpha =0.5\) and \(\Pi =2\).E-exact value, A-asymptotic value
Table 2 Exact and asymptotic values of \((R_{Dc})\) for various values of \(Q_{s}\) and small values of H for \(\gamma =1, \alpha =0.5\) and \(\Pi =2\).(E-exact value, A-asymptotic value)
Table 3 Exact and asymptotic values of \((R_{Dc})\) for various values of \(Q_{s}\) and large values of H for \(\gamma =1, \alpha =0.5\) and \(\Pi =2\)
Table 4 Exact and asymptotic values of \((R_{Dc})\) for various values of \(Q_{f}\) and large values of H for \(\gamma =1, \alpha =0.5\) and \(\Pi =2\)
Table 5 Exact and asymptotic values of \((R_{Dc})\) for various values of \(Q_{s}\) and large values of \(\gamma\) for \(H=10, \alpha =0.5\) and \(\Pi =2\)
Table 6 Exact and asymptotic values of \((R_{Dc})\) for various values of \(Q_{f}\) and large values of \(\gamma\) for \(H=10, \alpha =0.5\) and \(\Pi =2\)
Table 7 Exact meaning of \(H \rightarrow 0\) and \(H \rightarrow \infty\), for large values of \(\gamma\)
Table 8 Exact meaning of \(\gamma \rightarrow \infty\), for large values of H
Table 9 Comparison of Postelnicu and the present paper for \(Q_{f}=Q_{s}=0\) and \(\alpha =0.5\)
Table 10 Comparison of Banu and Rees [1] and the present study for \(\Pi =Q_{f}=Q_{s}=0\) and \(\alpha =0.5\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakshath, T.N., Kumar, C.H. Mixed convection in a liquid-saturated densely packed porous medium using local thermal non-equilibrium model. Eur. Phys. J. Plus 138, 726 (2023). https://doi.org/10.1140/epjp/s13360-023-04347-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04347-w

Navigation