Skip to main content
Log in

Hybrid relativistic and modified Toda lattice-type system: equivalent form, N-fold Darboux transformation and analytic solutions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Studies of the lattice systems are of current interest due to their applications in relativity, optics, condensed matter physics and plasma physics. In this paper, we look into a hybrid relativistic and modified Toda lattice-type system. An equivalent form of that system is provided by virtue of certain transformations. Based on the Lax pair of that equivalent form, we construct an N-fold Darboux matrix and then derive the N-fold Darboux transformation, where N is a positive integer. Some analytic solutions are determined with the help of the associated N-fold Darboux transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Notes

  1. Investigations on certain nonlinear waves of the continuous nonlinear systems have been shown, e.g., in Refs. [11,12,13,14,15,16,17,18,19,20].

References

  1. O.O. Vakhnenko, A.P. Verchenko, Eur. Phys. J. Plus 137, 1176 (2022)

    Article  Google Scholar 

  2. J. Li, J. Zeng, Phys. Rev. A 103, 013320 (2021)

    Article  ADS  Google Scholar 

  3. Y.V. Kartashov, F. Ye, V.V. Konotop, L. Torne, Phys. Rev. Lett. 127, 163902 (2021)

    Article  ADS  Google Scholar 

  4. A.P. Chetverikov, W. Ebeling, E. Schöll, M.G. Velarde, Chaos 31, 083123 (2021)

    Article  ADS  Google Scholar 

  5. V. Bargmann, Rev. Mod. Phys. 29, 161 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Einstein, Relativity: The Special and General Theory (Penguin, 1920)

  7. E. Kengne, W.M. Liu, L.Q. English, B.A. Malomed, Phys. Rep. 982, 1 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  8. M.J. Ablowitz, J.T. Cole, Physica D 440, 133440 (2022)

    Article  Google Scholar 

  9. Y. Yamamoto, N. Minoshita, M. Iwasaki, Physica D 440, 133485 (2022)

    Article  Google Scholar 

  10. A. Galajinsky, J. High Energ. Phys. 2019, 61 (2019)

    Article  MathSciNet  Google Scholar 

  11. X.H. Wu, Y.T. Gao, X. Yu, C.C. Ding, L. Hu, L.Q. Li, Wave Motion 114, 103036 (2022)

    Article  Google Scholar 

  12. C.D. Cheng, B. Tian, Y. Shen, T.Y. Zhou, Nonlinear Dyn. 111, 6659 (2023)

    Article  Google Scholar 

  13. T.Y. Zhou, B. Tian, Appl. Math. Lett. 133, 108280 (2022)

    Article  Google Scholar 

  14. X.Y. Gao, Y.J. Guo, W.R. Shan, Appl. Math. Lett. 132, 108189 (2022)

    Article  Google Scholar 

  15. X.Y. Gao, Y.J. Guo, W.R. Shan, Qual. Theory Dyn. Syst. 22, 17 (2023)

    Article  Google Scholar 

  16. X.H. Wu, Y.T. Gao, X. Yu, C.C. Ding, Chaos Solitons Fract. 165, 112786 (2022)

    Article  Google Scholar 

  17. X.Y. Gao, Y.J. Guo, W.R. Shan, Appl. Comput. Math. 22, 133 (2023)

    Google Scholar 

  18. X.T. Gao, B. Tian, Y. Shen, C.H. Feng, Qual. Theory Dyn. Syst. 21, 104 (2022)

    Article  Google Scholar 

  19. X.H. Wu, Y.T. Gao, X. Yu, L.Q. Liu, C.C. Ding, Nonlinear Dyn. 111, 5641 (2023)

    Article  Google Scholar 

  20. X.Y. Gao, Y.J. Guo, W.R. Shan, Nonlinear Dyn. 111, 9431 (2023)

    Article  Google Scholar 

  21. M. Toda, J. Phys. Soc. Jpn. 22, 431 (1967)

    Article  ADS  Google Scholar 

  22. M. Toda, J. Phys. Soc. Jpn. 23, 501 (1967)

    Article  ADS  Google Scholar 

  23. J. Ford, S.D. Stoddard, J.S. Turner, Prog. Theor. Phys. 50, 1547 (1973)

    Article  ADS  Google Scholar 

  24. M. Hénon, Phys. Rev. B 9, 1921 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  25. H. Flaschka, Phys. Rev. B 9, 1924 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  26. H. Flaschka, Prog. Theor. Phys. 51, 703 (1974)

    Article  ADS  Google Scholar 

  27. S.V. Manakov, Sov. Phys. ZETP 40, 269 (1975)

    ADS  Google Scholar 

  28. H.H. Chen, C.S. Liu, J. Math. Phys. 16, 1428 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  29. A.A. Stahlhofen, V.B. Matveev, J. Phys. A: Math. Gen. 28, 1957 (1995)

    Article  ADS  Google Scholar 

  30. J.J.C. Nimmo, Phys. Lett. A 99, 281 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  31. W.X. Ma, K. Maruno, Physica A 343, 219 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  32. S.N.M. Ruijsenaars, H. Schneider, Ann. Phys. 170, 370 (1986)

    Article  ADS  Google Scholar 

  33. S.N.M. Ruijsenaars, Commun. Math. Phys. 133, 217 (1990)

    Article  ADS  Google Scholar 

  34. M. Bruschi, O. Ragnisco, Phys. Lett. A 129, 21 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  35. M. Bruschi, O. Ragnisco, Phys. Lett. A 134, 365 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  36. O. Ragnisco, M. Bruschi, Inverse Probl. 5, 389 (1989)

    Article  ADS  Google Scholar 

  37. W. Oevel, B. Fuchssteiner, H. Zhang, O. Ragnisco, J. Math. Phys. 30, 2664 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  38. Y.B. Suris, Phys. Lett. A 145, 113 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  39. Y. Ohta, K. Kajiwara, J. Matsukidaira, J. Satsuma, J. Math. Phys. 34, 5190 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  40. Y.B. Suris, O. Ragnisco, Comm. Math. Phys. 200, 445 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  41. Y.B. Suris, J. Phys. A: Math. Gen. 29, 451 (1996)

    Article  ADS  Google Scholar 

  42. K. Maruno, K. Kajiwara, M. Oikawa, Phys. Lett. A 241, 335 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  43. K. Maruno, M. Oikawa, Phys. Lett. A 270, 122 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  44. H.Q. Zhao, Appl. Math. Lett. 38, 79 (2014)

    Article  MathSciNet  Google Scholar 

  45. Y.B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach (Birkhäuser Verlag, Basel, 2003)

    Book  MATH  Google Scholar 

  46. A. Pickering, Z.N. Zhu, Phys. Lett. A 378, 1510 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  47. X.Y. Wen, C.L. Yuan, Appl. Math. Lett. 123, 107591 (2022)

    Article  Google Scholar 

  48. W.X. Ma, Anal. Math. Phys. 9, 1711 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023 and 11471050, by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05), by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02 and by the BUPT Excellent Ph.D. Students Foundation (No. CX2022156).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Shen or Bo Tian.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Tian, B., Yang, DY. et al. Hybrid relativistic and modified Toda lattice-type system: equivalent form, N-fold Darboux transformation and analytic solutions. Eur. Phys. J. Plus 138, 744 (2023). https://doi.org/10.1140/epjp/s13360-023-04331-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04331-4

Navigation