Skip to main content

Advertisement

Log in

Topological analysis of hexagonal and rectangular porous graphene with applications to predicting \(\pi \)-electron energy

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Porous graphene (PG) is a class of graphene-related materials with nanopores in the plane. PG has properties distinct from graphene and broad possible uses in fields such as hydrogen storage and supercapacitors. Topological indices are numerical quantities that describe the topology of a graph and are usually graph invariant. Entropy measurements are a type of topological descriptor with a wide range of applications, including quantitative characterization of structural features and investigating specific chemical properties of molecular graphs. In this paper, we study the entropy of various PG tessellations using degree-based topological indices as weights. The obtained topological indices and entropies provide information on the structure’s underlying topological connectivities and molecular characteristics. It is observed that hexagonal porous graphene exhibits greater entropies than rectangular porous graphene. Applications of the developed techniques are used to predict the \(\pi \)-electron energy of these structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

No data associated in the manuscript.

References

  1. L. Jiang, Z. Fan, Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale 6(4), 1922–1945 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Amiri, F. Ghaemi, Microextraction in packed syringe by using a three dimensional carbon nanotube/carbon nanofiber-graphene nanostructure coupled to dispersive liquid-liquid microextraction for the determination of phthalate esters in water samples. Microchim. Acta 184, 3851–3858 (2017)

    Article  Google Scholar 

  3. H. Huang, H. Shi, P. Das, J. Qin, Y. Li, X. Wang, F. Su, P. Wen, S. Li, P. Lu, F. Liu, The chemistry and promising applications of graphene and porous graphene materials. Adv. Funct. Mater. 30(41), 1909035 (2020)

    Article  Google Scholar 

  4. R. Ansari, S. Ajori, S. Malakpour, Charecterization of elastic properties of porous graphene using an ab initio study. J. Ultrafine Grained Nanostruct. Mater. 49(2), 97–102 (2016)

    Google Scholar 

  5. M. Bieri, M. Treier, J. Cai, K. Aït- Mansoor, P. Reffieux, O. Gröning, P. Gröning, M. Kastler, R. Rieger, X. Feng, M. Müllen, R. Fascal, Porous graphene: two dimensional polymer synthesis with atomic precision. Chem. Commun. 45, 6919–6921 (2009)

    Article  Google Scholar 

  6. T. Premkumar, K.E. Geckeler, Graphene- DNA hybrid materials: assembly, applications, and prospects. Prog. Polym. Sci. 37(4), 515–529 (2012)

    Article  Google Scholar 

  7. H.W.C. Postma, Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett. 10(2), 420–425 (2010)

    Article  ADS  Google Scholar 

  8. J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G.L. Graff, W.D. Bennett, Z. Nie, L.V. Saraf, I.A. Aksay, J. Liu, Hierarchically porous graphene as a lithium-air-battery electrode. Nano Lett. 11(11), 5071–5078 (2011)

    Article  ADS  Google Scholar 

  9. P. Russo, A. Hu, G. Compagnini, Synthesis, properties and potential applications of porous graphene: a review. Nanomicro Lett. 5, 260–273 (2013)

    Google Scholar 

  10. D. Zhou, Y. Cui, P.W. Xiao, M.Y. Jiang, B.H. Han, A general and scalable synthesis approach to porous graphene. Nat. Commun. 5(1), 4716 (2014)

    Article  ADS  Google Scholar 

  11. M.C. Shanmuka, A. Usha, N.S. Basavarajappa, K.C. Shilpa, Graph entropies of porous graphene using topological indices. Comput. Theor. Chem. 1197, 113142 (2021)

    Article  Google Scholar 

  12. M.C. Shanmuka, A. Usha, K.C. Shilpa, N.S. Basavarajappa, M-polynomial and neighborhood M-polynomial methods for topological indices of porous graphene. Eur. Phys. J. Plus. 136, 1–16 (2021)

    Google Scholar 

  13. N.S. Basavarajappa, K. Niranjan, K.C. Shilpa, Computation of degree-based numerical descriptors of porous graphene. Lett. Appl. NanoBioSci. 12(4), 117 (2023)

    Google Scholar 

  14. K. Sathish, R. Bharati, Molecular descriptor analysis of polyphenylene superhoneycomb networks. Polycycl. Aromat. Compd. 43(5), 4803–4815 (2023)

    Article  Google Scholar 

  15. K. Sathish, R. Bharati, I. Muhammad, Expressions for mostar and weighted mostar invariants in a chemical structure. Main Group Met. Chem. 45(1), 265–271 (2022)

    Article  Google Scholar 

  16. D.S. Sabirov, I.S. Shepelevich, Information entropy in chemistry: an overview. Entropy 23(10), 1240 (2021)

    Article  ADS  Google Scholar 

  17. R. Kazemi, Entropy of weighted graphs with the degree-based topological indices as weights. MATCH Commun. Math. Comput. Chem. 76, 69–80 (2016)

    MathSciNet  MATH  Google Scholar 

  18. I. Gutman, Degree-based topological indices. Croat. Chem. Acta 86(4), 351–361 (2013)

    Article  Google Scholar 

  19. I. Gutman, B. Furtula, C. Elphick, Three new/ old vertex degree-based topological indices. MATCH Commun. Math. Comput. Chem. 72(3), 617–632 (2014)

    MathSciNet  MATH  Google Scholar 

  20. I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total \(\pi \)- electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17(4), 535–538 (1972)

    Article  ADS  Google Scholar 

  21. E. Estrada, Atom-bond connectivity and the energetic of branched alkanes. Chem. Phys. Lett. 463(4), 422–425 (2008)

    Article  ADS  Google Scholar 

  22. B. Zhou, N. Trinajstić, On general sum-connectivity index. J. Math. Chem. 47, 210–218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges. J. Math. Chem. 46, 1369–1376 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. L. Zhong, The Harmonic index on unicyclic graphs. Ars Combin. 104, 261–269 (2012)

    MathSciNet  MATH  Google Scholar 

  25. G. Shirdel, H. Rezapour, A. Sayadi, The Hyper-zagreb index of graph operations. Iran. J. Math. Chem. 4(2), 213–220 (2013)

    MATH  Google Scholar 

  26. B. Furtula, I. Gutman, A forgotten topological index. J. Math. Chem. 53, 1184–1190 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. B. Furtula, A. Graovac, D. Vukičević, Augmented Zagreb index. J. Math. Chem. 48, 370–380 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Dehmer, A. Mowshowitz, A history of entropy measures. Inf. Sci. 181(1), 57–78 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Abraham, M. Arockiaraj, J. Jency, S. Kavitha, K. Balasubramanian, Graph entropies, enumeration of circuits, walks and topological properties of three classes of isoreticular metal organic frameworks. J. Math. Chem. 60(4), 695–732 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  30. Z. Chen, M. Dehmer, Y. Shi, A note on distance based graph entropies. Entropy 16, 5416–5427 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. S.R.J. Kavitha, J. Abraham, M. Arockiaraj, J. Jency, K. Balasubramanian, Topological characterization and graph entropies of tessellations of kekulene structures: existence of isentropic structures and applications to thermochemistry, nuclear magnetic resonance, and electron Spin resonance. J. Phys. Chem. A 125(36), 8140–8158 (2021)

    Article  Google Scholar 

  32. M.P. Rahul, J. Clement, J.S. Junias, M. Arockiaraj, K. Balasubramanian, Degree-based entropies of graphene, graphyne and graphdiyne using Shannon’s approach. J. Mol. Struct. 1260, 132797 (2022)

    Article  Google Scholar 

  33. M. Arockiaraj, J. Jency, J. Abraham, S. Kavitha, K. Balasubramanian, Two-dimensional coronene fractal structures: topological entropy measures, energetics, NMR and ESR spectroscopic patterns and existence of isentropic structures. Mol. Phys. 120(11), e2079568 (2022)

    Article  ADS  Google Scholar 

  34. M. Arockiaraj, S. Prabhu, M. Arulperumjothi, S. Kavitha, K. Balasubramanian, Topological characterization of hexagonal and rectangular tessellations of kekulenes as traps for toxic heavy metal ions. Theor. Chem. Acc. 140(4), 1–24 (2021)

    Article  Google Scholar 

  35. M.P. Rahul, J. Clement, Topological characterization and entropy measures of large cavity cycloarene oligomers. Eur. Phys. J. Plus. 137(12), 1365 (2022)

    Article  Google Scholar 

  36. K. Jacob, J. Clement, M. Arockiaraj, D. Paul, K. Balasubramanian, Topological characterization and entropy measures of tetragonal zeolite merlinoites. J. Mol. Struct. 1277, 134786 (2023)

    Article  Google Scholar 

  37. M. Arockiaraj, J.C. Fiona, S.R.J. Kavitha, A.J. Shalini, K. Balasubramanian, Topological and spectral properties of wavy zigzag nanoribbons. Molecules 28(1), 152 (2023)

    Article  Google Scholar 

  38. S. Mushtaq, M. Arockiaraj, J.C. Fiona, J. Jency, K. Balasubramanian, Topological properties, entropies, stabilities and spectra of armchair versus zigzag coronene-like nanoribbons. Mol. Phys. 120(17), e2108518 (2022)

    Article  ADS  Google Scholar 

  39. K. Balasubramanian, Computational and artificial intelligence techniques for drug discovery and administration. Compr. pharmacol. 2, 553–616 (2022)

    Google Scholar 

  40. S. Govardhan, S. Roy, Krishnan Balasubramanian, S. Prabhu, Topological indices and entropies of triangular and rhomboidal tessellations of kekulenes with applications to NMR and ESR spectroscopies. J. Math. Chem. 61, 1477–1490 (2023)

    Article  Google Scholar 

  41. M. Albadrani, P. Ali, W.H. El-Garaihy, H. Abd El-Hafez, Prediction of exchange-correlation energy of graphene sheets from reverse degree-based molecular descriptors with applications. Materials 15(8), 2889 (2022)

    Article  ADS  Google Scholar 

  42. K. Bakhshi, S.A. Mojallal, Relation between topological indices and exchange correlation energy for graphene nanosurface: a DFT study. Fuller. Nanotub. Carbon Nanostruct. 21(7), 617–623 (2013)

    Article  ADS  Google Scholar 

  43. J. Rada, Vertex-degree based topological indices of graphene. Polycycl. Aromat. Compd. 42(4), 1524–1532 (2022)

    Article  Google Scholar 

  44. F. Cataldo, O. Ori, S. Iglesias-Groth, Topological lattice descriptors of graphene sheets with fullerene-like nanostructures. Mol. Simul. 36(5), 341–353 (2010)

    Article  Google Scholar 

  45. I. Gutman, The energy of a graph. Ber. Math. Stat. Sekt. Forschungszentrum Graz 103, 1–22 (1978)

    MATH  Google Scholar 

  46. I. Gutman, Polynomials in graph theory, in Chemical Graph Theory: Introduction and Fundamentals. ed. by D. Bonchev, D.H. Rouvray (Gordon and Breach, NewYork, 1991), pp.133–1176

    Google Scholar 

  47. L. Stevanović , V. Brankov, D. Cvetković, S. Simić. newGRAPH: A fully integrated environment used for research process in graph theory, http://www.mi.sanu.ac.rs/newgraph/index.html. (2021)

  48. B.J. McClelland, Properties of the latent roots of a matrix: the estimation of \(\pi \)-electron energies. J. Chem. Phys. 54(2), 640–643 (1971)

    Article  ADS  Google Scholar 

  49. I. Gutman, J.H. Koolen, V. Moulton, M. Parac, T. Soldatović, D. Vidović, Estimating and approximating the total \(\pi \)-electron energy of benzenoid hydrocarbons. Zeitschrift für Naturforschung A. 55(5), 507–512 (2000)

    Article  ADS  Google Scholar 

  50. I. Gutman, S. Radenković, S. Dordević, I.Z. Milovanović, E.I. Milovanović, Extending the McClelland formula for total \(\pi \)-electron energy. J. Math. Chem. 55(10), 1934–1940 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry (Springer, Berlin, 1986)

    Book  MATH  Google Scholar 

  52. L.J. Schaad, B.A. Hess, Hueckel molecular orbital \(\pi \)-resonance energies. question of the \(\sigma \) structure. J. Am. Chem. Soc. 94(9), 3068–3074 (1972)

    Article  Google Scholar 

  53. M. Dehmer, X. Li, Y. Shi, Connections between generalized graph entropies and graph energy. Complexity 21(1), 35–41 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  54. X. Li, Z. Qin, M. Wei, I. Gutman, M. Dehmer, Novel inequalities for generalized graph entropies-graph energies and topological indices. Appl. Math. Comput. 259, 470–479 (2015)

    MathSciNet  MATH  Google Scholar 

  55. F.H. Kaatz, A. Bultheel, Information thermodynamic model for nanostructures. J. Math. Chem. 52(6), 1563–1575 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SG contributed to conceptualization; writing—original draft; and validation. SR helped in supervison; validation; and conceptualization.

Corresponding author

Correspondence to S. Roy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govardhan, S., Roy, S. Topological analysis of hexagonal and rectangular porous graphene with applications to predicting \(\pi \)-electron energy. Eur. Phys. J. Plus 138, 670 (2023). https://doi.org/10.1140/epjp/s13360-023-04307-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04307-4

Navigation