Skip to main content
Log in

Hardness and fracture toughness models by symbolic regression

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Superhard materials with good fracture toughness have found wide industrial applications, which necessitates the development of accurate hardness and fracture toughness models for efficient materials design. Although several macroscopic models have been proposed, they are mostly semiempirical based on prior knowledge or assumptions, and obtained by fitting limited experimental data. Here, through an unbiased and explanatory symbolic regression technique, we built a macroscopic hardness model and fracture toughness model, which only require shear and bulk moduli as inputs. The developed hardness model was trained on an extended dataset including more non-cubic systems. The obtained models turned out to be simple, accurate, and transferable. Moreover, we assessed the performance of three popular deep learning models for predicting bulk and shear moduli, and found that the crystal graph convolutional neural network and crystal explainable property predictor perform almost equally well, both better than the atomistic line graph neural network. By combining the machine-learned bulk and shear moduli with the hardness and fracture toughness prediction models, potential superhard materials with good fracture toughness can be efficiently screened out through high-throughput calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available within the article.]

References

  1. J. Haines, J.-M. Leger, G. Bocquillon, Annu. Rev. Mater. Res. 31, 1 (2001). https://doi.org/10.1146/annurev.matsci.31.1.1

    Article  ADS  Google Scholar 

  2. B. Xu, Y. Tian, Sci. China Mater. 58, 132 (2015). https://doi.org/10.1007/s40843-015-0026-5

    Article  Google Scholar 

  3. J.J. Gilman, R.W. Cumberland, R.B. Kaner, Int. J. Refract. Metals Hard Mater. 24, 1 (2006). https://doi.org/10.1016/j.ijrmhm.2005.05.015

    Article  Google Scholar 

  4. A.L. Ivanovskii, J. Superhard Mater. 33, 73 (2011). https://doi.org/10.3103/S1063457611020018

    Article  Google Scholar 

  5. R. Riedel, Adv. Mater. 6, 549 (1994). https://doi.org/10.1002/adma.19940060705

    Article  Google Scholar 

  6. W.L. Mao, H.K. Mao, P.J. Eng, T.P. Trainor, M. Newville, C.C. Kao, D.L. Heinz, J. Shu, Y. Meng, R.J. Hemley, Science 302(5644), 425–427 (2003). https://doi.org/10.1126/science.1089713

    Article  ADS  Google Scholar 

  7. Q. Li, Y. Ma, A.R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, H.K. Mao, G. Zou, Phys. Rev. Lett. 102(17), 175506 (2009). https://doi.org/10.1103/PhysRevLett.102.175506

    Article  ADS  Google Scholar 

  8. H. Niu, X.-Q. Chen, S. Wang, D. Li, W.L. Mao, Y. Li, Phys. Rev. Lett. 108, 135501 (2012). https://doi.org/10.1103/PhysRevLett.108.135501

    Article  ADS  Google Scholar 

  9. P. Avery, X. Wang, C. Oses, E. Gossett, D.M. Proserpio, C. Toher, S. Curtarolo, E. Zurek, NPJ Comput. Mater. 5, 1 (2019). https://doi.org/10.1038/s41524-019-0226-8

    Article  Google Scholar 

  10. X. Cheng, W. Zhang, X.-Q. Chen, H. Niu, P. Liu, K. Du, G. Liu, D. Li, H.-M. Cheng, H. Ye, Y. Li, Appl. Phys. Lett. 103, 171903 (2013). https://doi.org/10.1063/1.4826485

    Article  ADS  Google Scholar 

  11. H. Dong, A. Oganov, V. Brazhkin, Q. Wang, J. Zhang, M. Davari, X.-F. Zhou, F. Wu, Q. Zhu, Phys. Rev. B 98, 1 (2018). https://doi.org/10.1103/PhysRevB.98.174109

    Article  Google Scholar 

  12. C. Zhao, Y. Duan, J. Gao, W. Liu, H. Dong, H. Dong, D. Zhang, A.R. Oganov, Phys. Chem. Chem. Phys. 20, 24665 (2018). https://doi.org/10.1039/C8CP04222E

    Article  Google Scholar 

  13. E. Bykova, S.V. Ovsyannikov, M. Bykov, Y. Yin, T. Fedotenko, H. Holz, S. Gabel, B. Merle, S. Chariton, V.B. Prakapenka, N. Dubrovinskaia, A.F. Goncharov, L. Dubrovinsky, J. Mater. Chem. A 10, 20111 (2022). https://doi.org/10.1039/D2TA02268K

    Article  Google Scholar 

  14. V.N. Chuvil’deev, Y.V. Blagoveshchenskii, M.S. Boldin, N. Sakharov, A.V. Nokhrin, N.V. Isaeva, S.V. Shotin, Y.G. Lopatin, O.A. Belkin, E.S. Smirnova, Tech. Phys. Lett. 41, 397 (2015). https://doi.org/10.1134/S1063785015040203

    Article  ADS  Google Scholar 

  15. C.M. Sung, M.F. Tai, Int. J. Refract. Metals Hard Mater. 15, 237 (1997). https://doi.org/10.1016/S0263-4368(97)00003-6

    Article  Google Scholar 

  16. C.L. Gao, W. Wu, J.D. Shi, Z.Y. Xiao, A. Akbarzadeh, Addit. Manuf. 34, 101378 (2020). https://doi.org/10.1016/j.addma.2020.101378

    Article  Google Scholar 

  17. V. Ivashchenko, S. Vepřek, A.S. Argon, P.E.A. Turchi, L. Gorb, F. Hill, J. Leszczynski, Thin. Solid Films 578, 83 (2015). https://doi.org/10.1016/j.tsf.2015.02.013

    Article  ADS  Google Scholar 

  18. Y. Tian, B. Xu, D. Yu, Y. Ma, Y. Wang, Y.B. Jiang, W. Hu, C. Tang, Y. Gao, K. Luo, Z. Zhao, L.-M. Wang, B. Wen, J. He, Z. Liu, Nature 493, 385 (2013). https://doi.org/10.1038/nature11728

    Article  ADS  Google Scholar 

  19. Y. Li, J. Hao, H. Liu, S. Lu, J.S. Tse, Phys. Rev. Lett. 115(10), 105502 (2015). https://doi.org/10.1126/science.1089713

    Article  ADS  Google Scholar 

  20. Z. Zhao, B. Xu, Y. Tian, Annu. Rev. Mater. Res. 46, 383 (2016). https://doi.org/10.1146/annurev-matsci-070115-031649

    Article  ADS  MathSciNet  Google Scholar 

  21. W.D. Hovsepian, P. Eh. Münz, Synthesis, structure, and applications of nanoscale multilayer/superlattice structured pvd coatings, in Nanostructured Coatings, edited by A. Cavaleiro and J. T. M. De Hosson (Springer New York, New York, NY, 2006) pp. 555–644, https://doi.org/10.1007/978-0-387-48756-4_14

  22. K. Choudhary, G. Cheon, E. Reed, F. Tavazza, Phys. Rev. B 98, 014107 (2018). https://doi.org/10.1103/PhysRevB.98.014107

    Article  ADS  Google Scholar 

  23. A.G. Kvashnin, Z. Allahyari, A.R. Oganov, J. Appl. Phys. 126, 040901 (2019). https://doi.org/10.1063/1.5109782

    Article  ADS  Google Scholar 

  24. E. Mazhnik, A.R. Oganov, J. Appl. Phys. 128, 075102 (2020). https://doi.org/10.1063/5.0012055

    Article  ADS  Google Scholar 

  25. A.H. Cole, J. Econ. Hist. 17, 476–477 (1957). https://doi.org/10.1017/S0022050700086927

    Article  Google Scholar 

  26. W.D. Nix, H. Gao, J. Mech. Phys. Solids 46, 411 (1998). https://doi.org/10.1016/S0022-5096(97)00086-0

    Article  ADS  Google Scholar 

  27. G. Sun, X. Feng, X. Wu, S. Zhang, B. Wen, J. Mater. Sci. Technol. 114, 215 (2022). https://doi.org/10.1016/j.jmst.2021.10.032

    Article  Google Scholar 

  28. Q. Li, H. Wang, Y. Ma, J. Superhard Mater. 32, 192 (2010). https://doi.org/10.3103/S1063457610030056

    Article  Google Scholar 

  29. Y. Tian, B. Xu, Z. Zhao, Int. J. Refract Metal Hard Mater. 33, 93 (2012). https://doi.org/10.1016/j.ijrmhm.2012.02.021

    Article  Google Scholar 

  30. J.J. Gilman, J. Appl. Phys. 44, 982 (1973). https://doi.org/10.1063/1.1662382

    Article  ADS  Google Scholar 

  31. D.M. Teter, MRS Bull. 23, 22 (1998). https://doi.org/10.1557/S0883769400031420

    Article  Google Scholar 

  32. X.-Q. Chen, H. Niu, D. Li, Y. Li, Intermetallics 19, 1275 (2011). https://doi.org/10.1016/j.intermet.2011.03.026

    Article  Google Scholar 

  33. S.F. Pugh, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45, 823 (1954). https://doi.org/10.1080/14786440808520496

  34. H. Niu, X.-Q. Chen, P. Liu, W. Xing, X. Cheng, D. Li, Y. Li, Sci. Rep. 2, 718 (2012). https://doi.org/10.1038/srep00718

    Article  Google Scholar 

  35. O.N. Senkov, D.B. Miracle, Sci. Rep. 11, 1 (2021). https://doi.org/10.1038/s41598-021-83953-z

    Article  ADS  Google Scholar 

  36. X.-Q. Chen, H. Niu, C. Franchini, D. Li, Y. Li, Phys. Rev. B 84, 121405 (2011). https://doi.org/10.1103/PhysRevB.84.121405

    Article  ADS  Google Scholar 

  37. M. Zhang, M. Lu, Y. Du, L. Gao, C. Lu, H. Liu, J. Chem. Phys. 140, 174505 (2014). https://doi.org/10.1063/1.4871627

    Article  ADS  Google Scholar 

  38. G. Zhang, R. Gao, Y. Zhao, T. Bai, Y. Hu, J. Alloy. Compd. 723, 802 (2017). https://doi.org/10.1016/j.jallcom.2017.06.303

    Article  Google Scholar 

  39. J. Zhang, Y. Jin, C. Zhang, Y. Wang, L. Tang, S. Li, M. Ju, J. Wang, W. Sun, X. Dou, RSC Adv. 12, 11722 (2022). https://doi.org/10.1039/D2RA01593E

    Article  ADS  Google Scholar 

  40. E. Mazhnik, A. Oganov, J. Appl. Phys. 126, 125109 (2019). https://doi.org/10.1063/1.5113622

    Article  ADS  Google Scholar 

  41. F. Gao, J. He, E. dong Wu, S. Liu, D. Yu, D. Li, S. Zhang, Y. Tian, Phys. Rev. Lett. 91,015502, (2003) https://doi.org/10.1103/PhysRevLett.91.015502

  42. X. Guo, L. Li, Z. Liu, D. Yu, J. He, R. Liu, B. Xu, Y. Tian, H.-T. Wang, J. Appl. Phys. 104, 023503 (2008). https://doi.org/10.1038/s41598-021-83953-z

    Article  ADS  Google Scholar 

  43. K. Li, X. Wang, F. Zhang, D. Xue, Phys. Rev. Lett. 100(23), 235504 (2008). https://doi.org/10.1103/PhysRevLett

    Article  ADS  Google Scholar 

  44. A. Šimůnek, Phys. Rev. B 75, 172108 (2007). https://doi.org/10.1103/PhysRevB.75.172108

    Article  ADS  Google Scholar 

  45. A. Simunek, J.C.V. Vackar, Phys. Rev. Lett. 96, 085501 (2006). https://doi.org/10.1103/PhysRevLett.96.085501

    Article  ADS  Google Scholar 

  46. F. Dai, Y. Zhou, Sci. Rep. 6, 33085 (2016). https://doi.org/10.1038/srep33085

    Article  ADS  Google Scholar 

  47. X.L. Sheng, Q.B. Yan, F. Ye, Q.R. Zheng, G. Su, Phys. Rev. Lett. 106(15), 155703 (2011). https://doi.org/10.1103/PhysRevLett.106.155703

    Article  ADS  Google Scholar 

  48. E.V. Podryabinkin, A.G. Kvashnin, M. Asgarpour, I.I. Maslenikov, D.A. Ovsyannikov, P.B. Sorokin, M.Y. Popov, A.V. Shapeev, J. Chem. Theory Comput. 18, 1109 (2022)

    Article  Google Scholar 

  49. A.E. Carlsson, R. Thomson, Fracture toughness of materials: From atomistics to continuum theory, in Solid State Physics - Advances in Research and Applications,Solid State Physics - Advances in Research and Applications, Vol. 51 (Academic Press Inc., 1998), https://doi.org/10.1016/S0081-1947(08)60192-7pp.233–280,c ed

  50. A.A. Griffith, G.I. Taylor, Ser. A Contain. Pap. Math. Phys. Charact. 221, 163 (1921). https://doi.org/10.1098/rsta.1921.0006

    Article  Google Scholar 

  51. R.M. Thomson, J. Phys. Chem. Solids 48, 965 (1987). https://doi.org/10.1016/0022-3697(87)90114-4

    Article  ADS  Google Scholar 

  52. H. Niu, S. Niu, A.R. Oganov, J. Appl. Phys. 125, 065105 (2019). https://doi.org/10.1063/1.5066311

    Article  ADS  Google Scholar 

  53. K. Rajan, Annu. Rev. Mater. Res. 45, 153 (2015). https://doi.org/10.1146/annurev-matsci-070214-021132

    Article  ADS  Google Scholar 

  54. H. Malik, IIUM Eng. J. 3, 871 (1970). https://doi.org/10.31436/iiumej.v3i1.353

    Article  Google Scholar 

  55. S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, O. Levy, Comput. Mater. Sci. 58, 227 (2012). https://doi.org/10.1016/j.commatsci.2012.02.002

    Article  Google Scholar 

  56. S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Rühl, C. Wolverton, NPJ Comput. Mater. 1, 15010 (2015). https://doi.org/10.1038/npjcompumats.2015.10

    Article  ADS  Google Scholar 

  57. A. Jain, S. Ong, G. Hautier, W. Chen, W. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. Persson, APL Mater. 1, 011002 (2013). https://doi.org/10.1063/1.4812323

    Article  ADS  Google Scholar 

  58. K. Choudhary, K. F. Garrity, A. C. E. Reid, B. DeCost, A. J. Biacchi, A. R. Hight Walker, Z. Trautt, J. Hattrick-Simpers, A.G. Kusne, A. Centrone, A. Davydov, J. Jiang, R. Pachter, G. Cheon, E. Reed, A. Agrawal, X. Qian, V. Sharma, H. Zhuang, S.V. Kalinin, B.G. Sumpter, G. Pilania, P. Acar, S. Mandal, K. Haule, D. Vanderbilt, K. Rabe, F. Tavazza, NPJ Comput. Mater. 6,173, (2020) https://doi.org/10.1038/s41524-020-00440-1

  59. K. Choudhary, B. DeCost, C. Chen, A. Jain, F. Tavazza, R. Cohn, C.W. Park, A. Choudhary, A. Agrawal, S. Billinge, E. Holm, S. Ong, C. Wolverton, NPJ Comput. Mater. 8, 59 (2022). https://doi.org/10.1038/s41524-022-00734-6

    Article  ADS  Google Scholar 

  60. D. Morgan, R. Jacobs, Annu. Rev. Mater. Res. 50, 1 (2020). https://doi.org/10.1146/annurev-matsci-070218-010015

    Article  Google Scholar 

  61. Z. Rao, P.-Y. Tung, R. Xie, Y. Wei, H. Zhang, A. Ferrari, P. Klaver, F. Körmann, P. Sukumar, A. Kwiatkowski da Silva, Y. Chen, Z. Li, D. Ponge, J. Neugebauer, O. Gutfleisch, S. Bauer, D. Raabe, Science 378, 78 (2022). https://doi.org/10.1126/science.abo4940

    Article  ADS  Google Scholar 

  62. T.D. Sparks, S.K. Kauwe, M.E. Parry, A.M. Tehrani, J. Brgoch, Annu. Rev. Mater. Res. 50, 27 (2020). https://doi.org/10.1146/annurev-matsci-110519-094700

    Article  ADS  Google Scholar 

  63. C. Suh, C. Fare, J.A. Warren, E.O. Pyzer-Knapp, Annu. Rev. Mater. Res. 50, 1 (2020). https://doi.org/10.1146/annurev-matsci-082019-105100

    Article  ADS  Google Scholar 

  64. G.L.W. Hart, T.O. Mueller, C. Toher, S. Curtarolo, Nat. Rev. Mater. 6, 730 (2021). https://doi.org/10.1038/s41578-021-00340-w

    Article  ADS  Google Scholar 

  65. J.E. Saal, A.O. Oliynyk, B. Meredig, Annu. Rev. Mater. Res. 50, 49 (2020). https://doi.org/10.1146/annurev-matsci-090319-010954

    Article  ADS  Google Scholar 

  66. O. Isayev, C. Oses, C. Toher, E. Gossett, S. Curtarolo, A. Tropsha, Nat. Commun. 8, 15679 (2017). https://doi.org/10.1038/ncomms15679

    Article  ADS  Google Scholar 

  67. Z. Alizadeh, M. Mohammadizadeh, Phys. C Amsterdam. Neth. 558, 7 (2019). https://doi.org/10.1016/j.physc.2018.12.008

    Article  ADS  Google Scholar 

  68. V.G. Stanev, C. Oses, A.G. Kusne, E. Rodriguez, J. Paglione, S. Curtarolo, I. Takeuchi, NPJ Comput. Mater. 4, 1 (2017). https://doi.org/10.1038/s41524-018-0085-8

    Article  Google Scholar 

  69. L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, NPJ Comput. Mater. 2, 16028 (2016). https://doi.org/10.1038/npjcompumats.2016.28

    Article  Google Scholar 

  70. Z. Shi, E. Tsymbalov, M. Dao, S. Suresh, A.V. Shapeev, J. Li, Proc. Natl. Acad. Sci. U.S.A. 116, 4117 (2019). https://doi.org/10.1073/pnas.1818555116

    Article  ADS  Google Scholar 

  71. G. Turán, Computational learning theory and neural networks: A survey of selected topics, in Theoretical Advances in Neural Computation and Learning, edited by V. Roychowdhury, K.Y. Siu, and A. Orlitsky (Springer US,Boston, MA, 1994) pp. 243–293, https://doi.org/10.1007/978-1-4615-2696-4_7

  72. E. Tsymbalov, Z. Shi, M. Dao, S. Suresh, J. Li, A.V. Shapeev, NPJ Comput. Mater. 7, 1 (2021). https://doi.org/10.1038/npjcompumats.2016.28

    Article  Google Scholar 

  73. C. Chen, W. Ye, Y. Zuo, C. Zheng, S.P. Ong, Chem. Mater. 31, 3564 (2019). https://doi.org/10.1021/acs.chemmater.9b01294

    Article  Google Scholar 

  74. C. Chen, S.P. Ong, NPJ Comput. Mater. 7, 1 (2021). https://doi.org/10.1038/s41524-021-00639-w

    Article  ADS  Google Scholar 

  75. T. Xie, J.C. Grossman, Phys. Rev. Lett. 120(14), 145301 (2017). https://doi.org/10.1103/PhysRevLett.120.145301

    Article  ADS  Google Scholar 

  76. A.M. Tehrani, A.O. Oliynyk, M.E. Parry, Z. Rizvi, S. Couper, F. Lin, L. Miyagi, T.D. Sparks, J. Brgoch, J. Am. Chem. Soc. 140(31), 9844 (2018). https://doi.org/10.1021/jacs.8b02717

    Article  Google Scholar 

  77. Y. Wang, N. Wagner, J.M. Rondinelli, MRS Communications 9, 793 (2019). https://doi.org/10.1557/mrc.2019.85

    Article  ADS  Google Scholar 

  78. T. Stephens, Gplearn, https://gplearn.readthedocs.io/en/latest/intro.html (2015)

  79. B. Weng, Z. Song, Z. Rilong, Q. Yan, Q. Sun, C. Grice, Y. Yan, W.-J. Yin, Nat. Commun. 11, 3513 (2020). https://doi.org/10.1038/s41467-020-17263-9

    Article  ADS  Google Scholar 

  80. L.M. Ghiringhelli, J. Vybiral, S.V. Levchenko, C. Draxl, M. Scheffler, Phys. Rev. Lett. 114, 105503 (2015). https://doi.org/10.1103/PhysRevLett.114.105503

    Article  ADS  Google Scholar 

  81. J.R. Koza, Stat. Comput. 4, 87 (1994). https://doi.org/10.1007/BF00175355

    Article  Google Scholar 

  82. S. Forrest, Science 261, 872 (1993). https://doi.org/10.1126/science.8346439

    Article  ADS  Google Scholar 

  83. S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A. Persson, G. Ceder, Comput. Mater. Sci. 68, 314 (2013). https://doi.org/10.1016/j.commatsci.2012.10.028

    Article  Google Scholar 

  84. P. Wei, Y. Sun, X.-Q. Chen, D. Li, Y. Li, Appl. Phys. Lett. 97, 061910 (2010). https://doi.org/10.1063/1.3479478

    Article  ADS  Google Scholar 

  85. Y. Xu, F. Gao, X. Hao, Phys. Status Solidi RRL Rapid Res. Lett. 4, 200 (2010). https://doi.org/10.1002/pssr.201004187

    Article  ADS  Google Scholar 

  86. W. Lambrecht, B. Segall, Phys. Rev. B 45, 1485 (1992). https://doi.org/10.1103/PhysRevB.45.1485

    Article  ADS  Google Scholar 

  87. G. Hui-Yang, G. Fa-Ming, Z. Jing-Wu, L. Zhi-Ping, Chin. Phys. B 20, 016201 (2011). https://doi.org/10.1088/1674-1056/20/1/016201

    Article  ADS  Google Scholar 

  88. H. Niu, J. Wang, X.-Q. Chen, D. Li, Y. Li, P. Lazar, R. Podloucky, A. Kolmogorov, Phys. Rev. B 85, 144116 (2012). https://doi.org/10.1103/PhysRevB.85.144116

    Article  ADS  Google Scholar 

  89. J. He, L. Guo, X. Guo, R. Liu, Y. Tian, H. Wang, C. Gao, Appl. Phys. Lett. 88, 101906 (2006). https://doi.org/10.1063/1.2182109

    Article  ADS  Google Scholar 

  90. F. Kalarasse, B. Bennecer, J. Phys. Chem. Solids 69, 1775 (2008). https://doi.org/10.1016/j.jpcs.2008.01.007

    Article  ADS  Google Scholar 

  91. K. Choudhary, B. DeCost, NPJ Comput. Mater. 7, 1 (2021). https://doi.org/10.1038/s41524-021-00650-1

    Article  Google Scholar 

  92. K. Das, B. Samanta, P. Goyal, S.-C. Lee, S. Bhattacharjee, N. Ganguly, NPJ Comput. Mater. 8, 43 (2022). https://doi.org/10.1038/s41524-022-00716-8

    Article  ADS  Google Scholar 

  93. C. Chen, W. Ye, Y. Zuo, C. Zheng, S. Ong, Chem. Mater. 31, 1 (2019). https://doi.org/10.1021/acs.chemmater.9b01294

    Article  Google Scholar 

  94. Y. Zhang, C. Ling, NPJ Comput. Mater. 4, 25 (2018). https://doi.org/10.1038/s41524-018-0081-z

    Article  ADS  Google Scholar 

  95. X. Jiang, J. Zhao, X. Jiang, Comput. Mater. Sci. 50, 2287 (2011). https://doi.org/10.1016/j.commatsci.2011.01.043

    Article  Google Scholar 

  96. Q. Gu, G. Krauss, W. Steurer, Adv. Mater. 20, 3620 (2008). https://doi.org/10.1002/adma.200703025

    Article  Google Scholar 

  97. P. Wang, R. Kumar, E.M. Sankaran, X. Qi, X. Zhang, D. Popov, A.L. Cornelius, B. Li, Y. Zhao, L. Wang, Inorg. Chem. 57, 1096 (2018). https://doi.org/10.1021/acs.inorgchem.7b02550

    Article  Google Scholar 

  98. D. Ying-chun, C. Min, G. Xiu-ying, J. Meng-heng, Chin. Phys. B 21, 067101 (2012). https://doi.org/10.1088/1674-1056/21/6/067101

    Article  ADS  Google Scholar 

  99. J. Yang, F. Gao, Phys. Status Solidi B 247, 2161 (2010). https://doi.org/10.1002/pssb.201046127

    Article  ADS  Google Scholar 

  100. Z. Zhao, L. Cui, L.-M. Wang, B. Xu, Z. Liu, D. Yu, J. He, X.-F. Zhou, H.-T. Wang, Y. Tian, Cryst. Growth Des. 10, 5024 (2010). https://doi.org/10.1021/cg100659g

    Article  Google Scholar 

  101. H. Gou, N. Dubrovinskaia, E. Bykova, A.A. Tsirlin, D. Kasinathan, W. Schnelle, A. Richter, M. Merlini, M. Hanfland, A.M. Abakumov, D. Batuk, G. Van Tendeloo, Y. Nakajima, A.N. Kolmogorov, L. Dubrovinsky, Phys. Rev. Lett. 111, 157002 (2013). https://doi.org/10.1103/PhysRevLett.111.157002

    Article  ADS  Google Scholar 

  102. S. Ma, K. Bao, Q. Tao, Y. Huang, C. Xu, L. Li, X. Feng, X. Zhao, P. Zhu, T. Cui, Int. J. Refract Metal Hard Mater. 85, 104845 (2019). https://doi.org/10.1016/j.ijrmhm.2018.12.010

    Article  Google Scholar 

  103. Q. Gan, H. Liu, S. Zhang, F. Wang, J. Cheng, X. Wang, S. Dong, Q. Tao, Y. Chen, P. Zhu, ACS Appl. Mater. Interfaces 13, 58162 (2021). https://doi.org/10.1021/acsami.1c17631

    Article  Google Scholar 

  104. A. Šimunek, M. Dušek, Mech. Mater. 112, 71 (2017). https://doi.org/10.1016/j.mechmat.2017.05.009

    Article  Google Scholar 

  105. D. Pu, Y. Pan, Ceram. Int. 47, 2311 (2021). https://doi.org/10.1016/j.ceramint.2020.09.073

    Article  Google Scholar 

  106. M.B. Kanoun, I.R. Shein, S. Goumri-Said, Solid State Commun. 150, 1095 (2010). https://doi.org/10.1016/j.ssc.2010.03.014

    Article  ADS  Google Scholar 

  107. S. Ma, K. Bao, Q. Tao, C. Xu, X. Feng, X. Zhao, Y. Ge, P. Zhu, T. Cui, Phys. Chem. Chem. Phys. 21, 2697 (2019). https://doi.org/10.1039/C8CP05870A

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R &D Program of China (Grant No. 2021YFB3501503), the National Natural Science Foundation of China (Grant No. 52201030, Grant No. 52188101), the National Science Fund for Distinguished Young Scholars (No. 51725103), and Chinese Academy of Sciences (No. ZDRW-CN-2021-2-5). All calculations were performed on the high performance computational cluster at the Shenyang National University Science and Technology Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peitao Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Appendix: Summary of experimental data on hardness and fracture toughness

Appendix: Summary of experimental data on hardness and fracture toughness

Table 4 A summary of material name, shear modules (G, in GPa), bulk modules (B, in GPa), experimental hardness (\(H^{\textrm{exp}}_V\), in GPa), predicted hardness using the Chen’s model (\(H^{\textrm{Chen}}_V\), in GPa) and the model in Eq. (4) (\(H^{\textrm{R2}}_V\), in GPa), and structure type for the dataset \(T^A\)
Table 5 Same as Table 4 but for the dataset \(T^B\). This dataset contains additional cubic systems that were not included in the Chen’s work [32]. The values of shear and bulk moduli with asterisk are taken from the Materials Project [57]
Table 6 Same as Table 4 but for the dataset \(T^C\). This dataset contains only non-cubic systems. The values of shear and bulk moduli with asterisk are taken from the Materials Project [57]
Table 7 The predicted fracture toughness (in MPa\(\cdot \)m\(^{1/2}\)) of covalent and ionic crystals using the Niu’s model Eq. (2) and the model in Eq. (5) as compared to the experimental data. The data of elastic moduli (G and B) and atomic volume (\(V_0\)) are taken from Ref. [52]

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Liu, P., Wang, J. et al. Hardness and fracture toughness models by symbolic regression. Eur. Phys. J. Plus 138, 643 (2023). https://doi.org/10.1140/epjp/s13360-023-04273-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04273-x

Navigation