Skip to main content
Log in

Quantitative modeling of diffusion-driven pattern formation in microRNA-regulated gene expression

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

MicroRNAs are extensively known for post-transcriptional gene regulation and pattern formation in the embryonic developmental stage. We explore the origin of these spatio-temporal patterns mathematically, considering three different motifs here. For three scenarios, (1) simple microRNA-based mRNA regulation with a graded response in output, (2) microRNA-based mRNA regulation resulting in bistability in the dynamics, and (3) a coordinated response of microRNA (miRNA), simultaneously regulating the mRNAs of two different pools, detailed dynamical analysis, as well as the reaction–diffusion scenario have been considered and analyzed in the steady state and for the transient dynamics further. We have observed persistent-temporal patterns, as a result of the dynamics of the motifs, that explain spatial gradients and relevant patterns formed by related proteins in development and phenotypic heterogenetic aspects in biological systems. Competitive effects of miRNA regulation have also been found to be capable to cause spatio-temporal patterns, persistent enough to direct developmental decisions. Under coordinated regulation, miRNAs are found to generate spatio-temporal patterning even from complete homogeneity in concentration of target protein, which may have impactful insights in choice of cell fates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The manuscript has no associated data.

Notes

  1. Link for the video is: https://youtu.be/C4zovgxtCpQ.

References

  1. A. Armenta-Medina, D. Lepe-Soltero, D. Xiang, R. Datla, C. Abreu-Goodger, C.S. Gillmor, Arabidopsis thaliana miRNAs promote embryo pattern formation beginning in the zygote. Dev. Biol. 431(2), 145–151 (2017)

    Article  Google Scholar 

  2. M. Banerjee, S. Pal, P.R. Chowdhury, Stationary and non-stationary pattern formation over fragmented habitat. Chaos Solitons Fractals 162, 112412 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Barbier, R. Perez-Carrasco, Y. Schaerli, Controlling spatiotemporal pattern formation in a concentration gradient with a synthetic toggle switch. Mol. Syst. Biol. 16(6), e9361 (2020)

    Article  Google Scholar 

  4. D.P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2), 281–297 (2004)

    Article  Google Scholar 

  5. M. Bhaskaran, M. Mohan, MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Vet. Pathol. 51(4), 759–774 (2014)

    Article  Google Scholar 

  6. M. Bianchi, A. Renzini, S. Adamo, V. Moresi, Coordinated actions of microRNAs with other epigenetic factors regulate skeletal muscle development and adaptation. Int. J. Mol. Sci. 18(4), 840 (2017)

    Article  Google Scholar 

  7. U. Bissels, A. Bosio, W. Wagner, Micrornas are shaping the hematopoietic landscape. Haematologica 97(2), 160 (2012)

    Article  Google Scholar 

  8. L. Borin, M. Weir, G. Schubiger, Egg ligation alter the BCD protein gradient and segmentation gene expression in embryos of drosophila. Mech. Dev. 42(1–2), 97–111 (1993)

    Article  Google Scholar 

  9. I. Bose, S. Ghosh, Origins of binary gene expression in post-transcriptional regulation by microRNAs. Eur. Phys. J. E 35, 1–8 (2012)

    Article  Google Scholar 

  10. G.A. Calin, C.M. Croce, Microrna signatures in human cancers. Nat. Rev. Cancer 6(11), 857–866 (2006)

    Article  Google Scholar 

  11. P. Chakraborty, S. Ghosh, Emergent correlations in gene expression dynamics as footprints of resource competition. Eur. Phys. J. E 44, 1–12 (2021)

    Article  Google Scholar 

  12. P. Chakraborty and S. Ghosh. Emergent regulatory response and shift of half induction point under resource competition in genetic circuits. In 2021 IEEE 18th India Council International Conference (INDICON), pp. 1–6. IEEE (2021)

  13. P. Chakraborty, M.K. Jolly, U. Roy, S. Ghosh, Spatio-temporal pattern formation due to host-circuit interplay in gene expression dynamics. Chaos Solitons Fractals 167, 112995 (2023)

    Article  MathSciNet  Google Scholar 

  14. X. Chen, Small RNAs and their roles in plant development. Ann. Rev. Cell Dev. 25, 21–44 (2009)

    Article  Google Scholar 

  15. J.P. Crutchfield, K. Kaneko, Are attractors relevant to turbulence? Phys. Rev. Lett. 60(26), 2715 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  16. J. Cursons, K.A. Pillman, K.G. Scheer, P.A. Gregory, M. Foroutan, S. Hediyeh-Zadeh, J. Toubia, E.J. Crampin, G.J. Goodall, C.P. Bracken et al., Combinatorial targeting by microRNAs co-ordinates post-transcriptional control of EMT. Cell Syst. 7(1), 77–91 (2018)

    Article  Google Scholar 

  17. S. DiNardo, J. Heemskerk, S. Dougan, P.H. O’Farrell, The making of a maggot: patterning the drosophila embryonic epidermis. Curr. Opin. Genet. Dev. 4(4), 529–534 (1994)

    Article  Google Scholar 

  18. Q. Dong, B. Hu, and C. Zhang. microRNAs and their roles in plant development. Front. Plant Sci. 13 (2022)

  19. W. Driever, C. Nüsslein-Volhard, A gradient of bicoid protein in drosophila embryos. Cell 54(1), 83–93 (1988)

    Article  Google Scholar 

  20. B. Ermentrout, Neural networks as spatio-temporal pattern-forming systems. Rep. Prog. Phys. 61(4), 353 (1998)

    Article  ADS  Google Scholar 

  21. R.C. Friedman, K.K.-H. Farh, C.B. Burge, D.P. Bartel, Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19(1), 92–105 (2009)

    Article  Google Scholar 

  22. R. Futahashi, H. Shirataki, T. Narita, K. Mita, H. Fujiwara, Comprehensive microarray-based analysis for stage-specific larval camouflage pattern-associated genes in the swallowtail butterfly, papilio xuthus. BMC Biol. 10(1), 1–22 (2012)

    Article  Google Scholar 

  23. W. Ge, Q. Deng, T. Guo, X. Hong, J.-M. Kugler, X. Yang, S.M. Cohen, Regulation of pattern formation and gene amplification during drosophila oogenesis by the mir-318 microRNA. Genetics 200(1), 255–265 (2015)

    Article  Google Scholar 

  24. A. Gierer, H. Meinhardt, A theory of biological pattern formation. Kybernetik 12, 30–39 (1972)

    Article  MATH  Google Scholar 

  25. A. Gyorgy, J.I. Jiménez, J. Yazbek, H.-H. Huang, H. Chung, R. Weiss, D. Del Vecchio, Isocost lines describe the cellular economy of genetic circuits. Biophys. J. 109(3), 639–646 (2015)

    Article  ADS  Google Scholar 

  26. H. Hamann, T. Schmickl, K. Crailsheim, Self-organized pattern formation in a swarm system as a transient phenomenon of non-linear dynamics. Math. Comput. Model. Dyn. Syst. 18(1), 39–50 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Hsia, W.J. Holtz, D.C. Huang, M. Arcak, M.M. Maharbiz, A feedback quenched oscillator produces turing patterning with one diffuser. PLoS Comput. Biol. 8(1), e1002331 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  28. D. Jana, S. Batabyal, M. Lakshmanan, Self-diffusion-driven pattern formation in prey-predator system with complex habitat under fear effect. Eur. Phys. J. Plus 135(11), 1–42 (2020)

    Article  Google Scholar 

  29. K. Jeyaseelan, K.Y. Lim, A. Armugam, Microrna expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 39(3), 959–966 (2008)

    Article  Google Scholar 

  30. M.W. Jones-Rhoades, D.P. Bartel, B. Bartel, Micrornas and their regulatory roles in plants. Annu. Rev. Plant Biol. 57, 19–53 (2006)

    Article  Google Scholar 

  31. A. Koch, H. Meinhardt, Biological pattern formation: from basic mechanisms to complex structures. Rev. Mod. Phys. 66(4), 1481 (1994)

    Article  ADS  Google Scholar 

  32. S. Kondo. How animals get their skin patterns: fish pigment pattern as a live turing wave. Syst. Biol. Chall. Complex. pp. 37–46 (2009)

  33. S. Kondo, R. Asai, A reaction-diffusion wave on the skin of the marine angelfish pomacanthus. Nature 376, 765–768 (1995)

    Article  ADS  Google Scholar 

  34. K.S. Kosik, The neuronal microRNA system. Nat. Rev. Neurosci. 7(12), 911–920 (2006)

    Article  Google Scholar 

  35. N. Kumari, V. Kumar, Controlling chaos and pattern formation study in a tritrophic food chain model with cannibalistic intermediate predator. Eur. Phys. J. Plus 137(3), 1–23 (2022)

    Article  Google Scholar 

  36. C.-J. Li, E.S. Liau, Y.-H. Lee, Y.-Z. Huang, Z. Liu, A. Willems, V. Garside, E. McGlinn, J.-A. Chen, T. Hong, Microrna governs bistable cell differentiation and lineage segregation via a noncanonical feedback. Mol. Syst. Biol. 17(4), e9945 (2021)

    Article  Google Scholar 

  37. J. Li, G.-Q. Sun, Z.-G. Guo, Bifurcation analysis of an extended Klausmeier–Gray–Scott model with infiltration delay. Stud. Appl. Math. 148(4), 1519–1542 (2022)

    Article  MathSciNet  Google Scholar 

  38. Y. Liu, X. Tao, Z. Zhang, L. Zhu, A study of the turing pattern formation in a predator-prey model based on network and non-network environments. Eur. Phys. J. Plus 137(6), 691 (2022)

    Article  Google Scholar 

  39. F.J. Lopes, F.M. Vieira, D.M. Holloway, P.M. Bisch, A.V. Spirov, Spatial bistability generates hunchback expression sharpness in the drosophila embryo. PLoS Comput. Biol. 4(9), e1000184 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  40. B.T. Mbopda, S. Issa, S. Abdoulkary, R. Guiem, H. Fouda, Pattern formations in nonlinear dynamics of hepatitis B virus. Eur. Phys. J. Plus 136(5), 1–15 (2021)

    Article  Google Scholar 

  41. J. Menezes, B. Moura, Pattern formation and coarsening dynamics in apparent competition models. Chaos Solitons Fractals 157, 111903 (2022)

    Article  MATH  Google Scholar 

  42. H. Miyazako, Y. Hori, and S. Hara. Turing instability in reaction–diffusion systems with a single diffuser: characterization based on root locus. In 52nd IEEE Conference on Decision and Control, pp. 2671–2676. IEEE (2013)

  43. H.G. Othmer, L. Scriven, Instability and dynamic pattern in cellular networks. J. Theor. Biol. 32(3), 507–537 (1971)

    Article  ADS  Google Scholar 

  44. J.F. Palatnik, E. Allen, X. Wu, C. Schommer, R. Schwab, J.C. Carrington, D. Weigel, Control of leaf morphogenesis by microRNAs. Nature 425(6955), 257–263 (2003)

    Article  ADS  Google Scholar 

  45. U. Roy, D. Singh, N. Vincent, C. K. Haritas, and M. K. Jolly. Spatiotemporal patterning enabled by gene regulatory networks. ACS Omega (2022)

  46. P. Shu, C. Wu, X. Ruan, W. Liu, L. Hou, H. Fu, M. Wang, C. Liu, Y. Zeng, P. Chen et al., Opposing gradients of microRNA expression temporally pattern layer formation in the developing neocortex. Dev. Cell 49(5), 764–785 (2019)

    Article  Google Scholar 

  47. G.-Q. Sun, H.-T. Zhang, Y.-L. Song, L. Li, Z. Jin, Dynamic analysis of a plant-water model with spatial diffusion. J. Diff. Equ. 329, 395–430 (2022)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. X.-J. Tian, M. V. Ferro, and H. Goetz. Modeling ncRNA-mediated circuits in cell fate decision. Comput. Biol. Non-Coding RNA Methods Protocols, pp. 411–426 (2019)

  49. X.-J. Tian, H. Zhang, J. Zhang, J. Xing, Reciprocal regulation between mRNA and microRNA enables a bistable switch that directs cell fate decisions. FEBS Lett. 590(19), 3443–3455 (2016)

    Article  Google Scholar 

  50. A.M. Turing, The chemical basis of morphogenesis. Bull. Math. Biol. 52(1–2), 153–197 (1990)

    Article  Google Scholar 

  51. Z. Zhang, Y.-W. Qin, G. Brewer, Q. Jing, Microrna degradation and turnover: regulating the regulators. Wiley Interdiscipl. Rev. RNA 3(4), 593–600 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

PC and SG acknowledge the support by DST-INSPIRE, India, vide sanction Letter No. DST/INSPIRE/04/2017/002765 dated- 13.03.2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priya Chakraborty.

Ethics declarations

Conflict of interest

The authors declare that they do not have any known conflicts of interest.

Appendix

Appendix

1.1 List of parameters:

For better clarity, we have given a list of parameters used in our entire manuscript hereby in Tables 1, 2 and 3.

Table 1 List of parameters for Model 1
Table 2 List of parameters for Model 2
Table 3 List of parameters for Model 3

1.2 Model 2: Binary gene expression, temporal dynamics

To understand the temporal dynamics of the protein synthesized, we plot the time evolution curves of the protein starting from different initial conditions for three set of parameter values. For the parameter values of Fig. 14a, low synthesis state is the system’s stable steady state, starting from all initialization, the system converges to it. Similarly, 14c can be explained for its high synthesis stable state. However, the system has two steady states for the parameter value of 14b, and a bistable dynamics is shown in the output. Starting from different initial concentrations, the protein chooses any of its either low or high synthesis states, which one is more favorable and two drastic different concentrations coexist in output.

Fig. 14
figure 14

Time evolution curves of protein U for different initial conditions. x axis represents time and y axis represents the concentration of protein U. (a) The system is monostable with low synthesis state as a steady state. So for all initiation, protein U goes to its low synthesis stable state. (b) The system is bistable with two steady states. So with different initial conditions, the system chooses any of its nearest stable states and finally, we are left with two stable fixed states. (c) The system is monostable with its high synthesis stable state. All states from different initial conditions move to a single high synthesis stable state. Parameter \(\alpha\) has value 12 for (a), 13.3 for (b), 14 for (c). Rest of the parameter values for all (a)–(c) are \(\lambda =10,\; k=10,\;\delta =0.01,\;\phi =0.3\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, P., Ghosh, S. Quantitative modeling of diffusion-driven pattern formation in microRNA-regulated gene expression. Eur. Phys. J. Plus 138, 630 (2023). https://doi.org/10.1140/epjp/s13360-023-04258-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04258-w

Navigation