Skip to main content
Log in

Influence of the noise strength in a novel tristate electronic circuit and its microcontroller-based experimental powered by multifrequency signals

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present study considers an electronic circuit for modeling a stochastic tristate system. The circuit shows the ghost stochastic resonance (GSR) and ghost stochastic antiresonance (GSAR) through the system dynamical properties. We investigated the dynamics occurred in the circuit composed of two AC generator and one noise generator. Our attention is focused on the noise effect which takes into account the circuit’s temperature. The circuit shows the changes according to four control parameters: the applied voltage amplitude, the frequency, the circuit damping and the multistability parameters (resistors). The multistability impact is the major aim explored in this work. Surprisingly, the system encounters a novel aspect which is simply the fact that three resistors are joined together to generate different sorts of multistability characteristics, starting from a tristable potential shape to a monostable potential shape and ending with a catastrophic potential shape. The dynamic of the system is studied numerically and by Pspice Simulation. The Pspice estimates match with numerical simulations. Firstly, we start by studying numerically the multistability effects as well as the damping term effects on the Mean First Passage Time (MFPT). Then, we study numerically the effect of multistability on the GSR and GSAR. Response curves obtained illustrating the appearance of GSR and GSAR in the system are obtained through the sine and the cosine Fourier component denoted \(Q(\omega )\). Remarkably, the variation of resistances greatly influences the occurrence of GSR and GSAR in the system. A low-cost microcontroller-based implementation for digital engineering applications is presented to confirm the feasibility of the circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no associated data available.]

References

  1. R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A 14, 453 (1981). https://doi.org/10.1088/0305-4470/14/11/006/pdf

    Article  ADS  MathSciNet  Google Scholar 

  2. R. Benzi, G. Parisi, A. Sutera, A. Vulpiani, Tellus 34, 10 (1982). https://doi.org/10.1111/j.2153-3490.1982.tb01787.x

    Article  ADS  Google Scholar 

  3. S. Zhang, Y. Yao, Z. Zhu, J. Yang, G. Shen, Eur. Phys. J. Plus 134, 1–3 (2019). https://doi.org/10.1140/epjp/i2019-12480-x

    Article  ADS  Google Scholar 

  4. N.G. Stocks, N.D. Stein, P.V. McClintock, J. Phys. A 26, L385 (1993). https://doi.org/10.1088/0305-4470/26/7/007/pdf

    Article  ADS  Google Scholar 

  5. Y. Jin, W. Xu, M. Xu, Chaos Solitons Fractals 26, 1183–1187 (2005). https://doi.org/10.1016/j.chaos.2005.02.026

    Article  ADS  Google Scholar 

  6. W. Zhang, P. Shi, M. Li, D. Han, Chaos Solitons Fractals 145, 110800 (2021). https://doi.org/10.1016/j.chaos.2021.110800

    Article  Google Scholar 

  7. E. Lanzana, R.N. Mantegnena, B. Spagnolo, R. Zangara, Am. J. Phys. 65, 341–349 (1997). https://doi.org/10.1119/1.18520

    Article  ADS  Google Scholar 

  8. H. Li, W. Qin, W. Deng, R. Tian, Eur. Phys. J. Plus 131, 1–9 (2016). https://doi.org/10.1140/epjp/i2016-16060-4

    Article  Google Scholar 

  9. Y. He, Y. Fu, Z. Qiao, Y. Kang, Chaos Solitons Fractals 142, 110536 (2021). https://doi.org/10.1016/j.chaos.2020.110536

    Article  Google Scholar 

  10. Y.V. Ushakov, A.A. Dubkov, B. Spagnolo, Phys. Rev. E 81, 041911 (2010). https://doi.org/10.1103/PhysRevE.81.041911

    Article  ADS  Google Scholar 

  11. P. Xu, Y. Jin, Chaos Solitons Fractals 138, 109857 (2020). https://doi.org/10.1119/1.18520

    Article  MathSciNet  Google Scholar 

  12. Y.J. Wadop Ngouongo, M. Djolieu Funaye, G. Djuidjé Kenmoé, T.C. Kofané, Phil. Trans. R. Soc. A 379, 20200234 (2021). https://doi.org/10.1098/rsta.2020.0234

    Article  ADS  Google Scholar 

  13. R.N. Mantegnena, B. Spagnolo, L. Tesla, M. Trapaneze, J. Appl. Phys. 97, 10E519 (2005). https://doi.org/10.1063/1.1856276

    Article  Google Scholar 

  14. M. Hou, J. Yang, S. Shi, H. Liu, Eur. Phys. J. Plus 135, 747 (2020). https://doi.org/10.1140/epjp/s13360-020-00770-5

    Article  Google Scholar 

  15. T. Zhou, F. Moss, Phys. Rev. A 41, 4255 (1990). https://doi.org/10.1103/PhysRevA.41.4255

    Article  ADS  Google Scholar 

  16. A. Utagawa, T. Asai, Y. Amemiya, Nonlinear Theory Appl. IEICE 2, 409–416 (2011). https://doi.org/10.1587/nolta.2.409

    Article  ADS  Google Scholar 

  17. R.N. Mantegna, B. Spagnolo, Phys. Rev. E 49, R1792 (1994). https://doi.org/10.1103/PhysRevE.49.R1792

    Article  ADS  Google Scholar 

  18. F. Hartmann, A. Forchel, I. Neri, L. Gammaitoni, L. Worschech, Appl. Phys. Lett. 98, 032110 (2011). https://doi.org/10.1063/1.3548539

    Article  ADS  Google Scholar 

  19. A.N. Mikhaylov, D.V. Guseinov, V. Belov et al., Chaos Solitons Fractals 144, 110723 (2021). https://doi.org/10.1016/j.chaos.2021.110723

    Article  Google Scholar 

  20. I. Gomes, C.R. Mirasso, O. Calvo, Phys. A Stat. Mech. Appl. 327, 115–119 (2003). https://doi.org/10.1016/S0378-4371(03)00461-8

    Article  Google Scholar 

  21. W. Korneta, I. Gomes, C.R. Mirasso, R. Toral, Phys. D Nonlinear Phenom. 219, 93–100 (2006). https://doi.org/10.1016/j.physd.2006.05.016

    Article  ADS  Google Scholar 

  22. S. Arathi, S. Rajasekar, J. Kurths, Int. J. Bifurc. Chaos 23, 1350132 (2013). https://doi.org/10.1142/S0218127413501320

    Article  Google Scholar 

  23. I. Lee, X. Liu, C. Zhou, B. Kosko, IEEE Trans. Nanotech. 5, 613–627 (2006). https://doi.org/10.1109/TNANO.2006.883476

    Article  ADS  Google Scholar 

  24. S. Kasai, Int. J. Nanotechnol. Mol. Comput. 1, 70–79 (2009)

    Article  ADS  Google Scholar 

  25. D.G. Luchinsky, R. Mannella, P.V.E. McClintock, N.G. tocks, IEEE Trans. Circuits Syst. II 46, 1205–1214 (1999). https://doi.org/10.1109/82.793710

    Article  Google Scholar 

  26. O. Calvo, D.R. Chialvo, Int. J. Bifurc. Chaos 16, 731–735 (2006). https://doi.org/10.1142/S0218127406015106

    Article  Google Scholar 

  27. S. Rajasekar, M.A.F. Sanjuan, (Springer, Berlin, 2016) https://doi.org/10.1007/978-3-319-24886-8

  28. D.R. Chialvo, O. Calvo, D.L. Gonzalez, O. Piro, G.V. Savino, Phys. Rev. E 65, 050902 (2002). https://doi.org/10.1103/PhysRevE.65.050902

    Article  ADS  MathSciNet  Google Scholar 

  29. D.R. Chialvo, AIP Adv. 665, 43–50 (2003). https://doi.org/10.1063/1.1584873

    Article  Google Scholar 

  30. J.F. Schouten, R.J. Ritsma, B.L. Cardozo, J. Acoust. Soc. Am. 34, 1418–1424 (1962). https://doi.org/10.1121/1.1918360

    Article  ADS  Google Scholar 

  31. J.H. Cartwright, D.L. Gonzalez, O. Piro, Phys. Rev. Lett. 82, 5389 (1999). https://doi.org/10.1103/PhysRevLett.82.5389

    Article  ADS  Google Scholar 

  32. A.F. Moyo Tala, Y. Wadop Ngouongo, G. Djuidjé Kenmoé, T.C. Kofané, Phys. A 582, 126247 (2021). https://doi.org/10.1016/j.physa.2021.126247

    Article  Google Scholar 

  33. O. Calvo, D.R. Chialvo, Int. J. Bifurc. Chaos 16, 731 (2006). https://doi.org/10.1142/S0218127406015106

    Article  Google Scholar 

  34. A. Lopera, J.M. Buldú, M.C. Torrent, D.R. Chialvo, J. García-Ojalvo, Phys. Rev. E 73, 021101 (2006). https://doi.org/10.1103/PhysRevE.73.021101

    Article  ADS  Google Scholar 

  35. A. Fiasconaro, B. Spagnolo, S. Boccaletti, Phys. Rev. E 72, 061110 (2005). https://doi.org/10.1103/PhysRevE.72.061110

    Article  ADS  Google Scholar 

  36. I. Gomes, M.V.D. Vermelho, M.L. Lyra, Phys. Rev. E 85, 056201 (2012). https://doi.org/10.1103/PhysRevE.85.056201

    Article  ADS  Google Scholar 

  37. Q. Xu, Z. Song, H. Bao, M. Chen, B. Bao, A.E.U. Int, J. Electron. Commun. 96, 66–74 (2018). https://doi.org/10.1016/j.aeue.2018.09.017

    Article  Google Scholar 

  38. Z.T. Njitacke, J. Kengne, H.B. Fotsin, Int. J. Dyn. Control 7, 36–52 (2019). https://doi.org/10.1007/s40435-018-0435-x

    Article  MathSciNet  Google Scholar 

  39. T. Fonzin Fozin, P. Megavarna Ezhilarasu, Z.T. Njitacke, G.D. Leutcho, J. Kengne et al., Chaos 29, 113105 (2019). https://doi.org/10.1063/1.5121028

    Article  ADS  MathSciNet  Google Scholar 

  40. Z. Wei, W. Zhang, M. Yao, Nonlinear Dyn. 82, 1251–1258 (2015). https://doi.org/10.1007/s11071-015-2230-y

    Article  Google Scholar 

  41. B.C. Bao, Q. Xu, H. Bao, M. Chen, Electron. Lett. 52, 1008–1010 (2016). https://doi.org/10.1049/el.2016.0563

    Article  ADS  Google Scholar 

  42. Z.T. Njitacke, J. Kengne, R.W. Tapche, F.B. Pelap, Chaos Solitons Fractals 107, 177–185 (2018). https://doi.org/10.1016/j.chaos.2018.01.004

    Article  ADS  MathSciNet  Google Scholar 

  43. J.C. Sprott, S. Jafari, A.J.M. Khalaf, T. Kapitaniak, Eur. Phys. J. Spec. Top. 226, 1979–1985 (2017). https://doi.org/10.1140/epjst/e2017-70037-1

    Article  Google Scholar 

  44. Y. Tang, H.R. Abdolmohammadi, A.J.M. Khalaf, Y. Tian, T. Kapitaniak, Pramana 91, 1–6 (2018). https://doi.org/10.1007/s12043-018-1581-6

    Article  ADS  Google Scholar 

  45. S. Puthanveeti, W.C. Liu, K.S. Riley, A.F. Arrieta, H. Le Ferrand, Compos. Sci. Technol. 217, 109097 (2022). https://doi.org/10.1016/j.compscitech.2021.109097

    Article  Google Scholar 

  46. H.Y. Jeong, E. Lee, S. Ha, N. Kim, Y.C. Jun, Adv. Mater. Technol. 4, 1800495 (2019). https://doi.org/10.1002/admt.201800495

    Article  Google Scholar 

  47. A.N. Pisarchik, B.F. Kuntsevich, IEEE J. Quantum Electron. 38, 1594–1598 (2002). https://doi.org/10.1109/JQE.2002.805110

    Article  ADS  Google Scholar 

  48. A.N. Pisarchik, U. Feudel, Phys. Rep. 540, 167–218 (2014). https://doi.org/10.1016/j.physrep.2014.02.007

    Article  ADS  MathSciNet  Google Scholar 

  49. J.S. Teh, M. Alawida, Y.C. Sii, J. Inf. Secur. Appl. 50, 102421 (2020). https://doi.org/10.1016/j.jisa.2019.102421

    Article  Google Scholar 

  50. N.J. De Dieu, T. Ruben FSV Nestor, N.T. Zeric, K. Jacques, Multimedia Tools Appl. 81, 10907–10934 (2022). https://doi.org/10.1007/s11042-022-12044-6

    Article  Google Scholar 

  51. Z.T. Njitacke, C. Feudjio, V.F. Signing et al., Eur. Phys. J. Plus 137, 619 (2022). https://doi.org/10.1140/epjp/s13360-022-02821-5

    Article  Google Scholar 

  52. A. Sambas, S. Vaidyanathan, E. Tlelo-Cuautle et al., IEEE Acces 8, 137116–137132 (2020). https://doi.org/10.1109/ACCESS.2020.3011724

    Article  Google Scholar 

  53. J. Sun, C. Li, T. Lu, A. Akgul, F. Min, IEEE Acces 8, 139289–139298 (2020). https://doi.org/10.1109/ACCESS.2020.3012455

    Article  Google Scholar 

  54. N. Kidambi, R.L. Harne, K.W. Wand, Smart Mater. Struct. 26, 085011 (2017). https://doi.org/10.1088/1361-665X/aa721a/meta

    Article  ADS  Google Scholar 

  55. R.L. Harne, M.E. Schoemaker, B.E. Dussault, K.W. Wang, Appl. Energy 130, 148–156 (2014). https://doi.org/10.1016/j.apenergy.2014.05.038

    Article  Google Scholar 

  56. P. Harris, M. Arafa, G. Litak, C.R. Bowen, J. Iwaniec, Eur. Phys. J. B 90, 1–11 (2017). https://doi.org/10.1140/epjb/e2016-70619-y

    Article  Google Scholar 

  57. S. Zhou, M. Lallart, A. Erturk, J. Sound Vib. 528, 116886 (2022). https://doi.org/10.1016/j.jsv.2022.116886

    Article  Google Scholar 

  58. S. Fang, S. Zhou, D. Yurchenko, T. Yang, W.H. Liao, Mech. Syst. Signal Process 166, 108419 (2022). https://doi.org/10.1016/j.ymssp.2021.108419

    Article  Google Scholar 

  59. D.A. Magallón, R. Jaimes-Reágui, J.H. García-López et al., Mathematics 10, 3140 (2022). https://doi.org/10.3390/math10173140

    Article  Google Scholar 

  60. P. Jorwe, J.Y. Effa, S.N. Engo, JOSA B 37, A36–A44 (2020). https://doi.org/10.1364/JOSAB.396237

    Article  Google Scholar 

  61. D.G. Luchinsky, R. Mannella, P.V. McClintock, G.S. Nigel, Digit. Signal Process. 46, 1215–1224 (1999). https://doi.org/10.1109/82.793711

    Article  Google Scholar 

  62. S. Kamdem Tchiedjo, J. Kengne, G. Djuidjé Kenmoé, Int. J. Electron. Lett. (2022). https://doi.org/10.1080/21681724.2022.2068193

    Article  Google Scholar 

  63. P. Hanggi, J. Stat. Phys. 42, 105–148 (1986). https://doi.org/10.1007/BF01010843

    Article  ADS  Google Scholar 

  64. W. Wang, Z. Yan, X. Liu, Phys. Lett. A 381, 2324–2336 (2017). https://doi.org/10.1016/j.physleta.2017.05.011

    Article  ADS  MathSciNet  Google Scholar 

  65. P. Shi, W. Zhang, D. Han, M. Li, Chaos Solitons Fractals 128, 155–166 (2019). https://doi.org/10.1016/j.chaos.2019.07.048

    Article  ADS  MathSciNet  Google Scholar 

  66. F.D. Barlett, W.G. Flanelly, J. Am. Helicopter Soc. 19, 11–15 (1974). https://doi.org/10.4050/JAHS.19.11

    Article  Google Scholar 

  67. N.V. Agudov, A.V. Krichigin, RADIOPHYS QUANT EL+ 51, 812–824 (2008). https://doi.org/10.1007/s11141-009-9085-3

    Article  ADS  Google Scholar 

  68. N.V. Agudov, A.V. Krichigin, Int. J. Bifurc. Chaos 18, 2833–2839 (2008). https://doi.org/10.1142/S021812740802207X

    Article  Google Scholar 

  69. N.J. Kasdin, Guid. J. Control Dyn. 18, 114 (1995). https://doi.org/10.2514/3.56665?journalCode=jgcd

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Djolieu Funaye.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djolieu Funaye, M., Moyo Tala, A.F., Kamdem Tchiedjo, S. et al. Influence of the noise strength in a novel tristate electronic circuit and its microcontroller-based experimental powered by multifrequency signals. Eur. Phys. J. Plus 138, 627 (2023). https://doi.org/10.1140/epjp/s13360-023-04224-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04224-6

Navigation