Skip to main content
Log in

Complex dynamics in a discrete adaptive synapse-based neuron model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Discrete nonlinear systems usually have higher implementation efficiency than continuous nonlinear systems, but they can also exhibit dynamics diversity and chaos complex as continuous nonlinear systems. In this article, a two-dimensional (2D) discrete adaptive synapse-based neuron (DASN) model without external excitation is proposed using Euler’s discretization method. The proposed model has a complicated nonlinear activation function with upper and lower bounds, and its fixed points are not only variable in number, but also have different types of stability, resulting in the emergence of complex dynamics and multi-stability. Further, the dynamical effects of control parameters and initial values on the DASN model are explored using several numerical methods, and the complicated dynamical behaviors such as hyperchaos, chaos, quasi-period, period, stable point, quasi-periodic bifurcation, and period-doubling bifurcation are revealed thereby. Besides, a STM32-based hardware platform is exploited to digitally implement the DASN model and the unstable attractors are acquired experimentally to confirm the numerical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availibility

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical research work, so no additional data are associated with this work.]

References

  1. P.Z. Wieczorek, K. Gołofit, True random number generator based on flip-flop resolve time instability boosted by random chaotic source. IEEE Trans. Circuits I(65), 1279–1292 (2018)

    Google Scholar 

  2. Z. Hua, Y. Chen, H. Bao et al., Two-dimensional parametric polynomial chaotic system. IEEE Trans. Syst. Man Cybern. Syst. 52, 4402–4414 (2022)

    Article  Google Scholar 

  3. S. Chen, S. Yu, J. Lü et al., Design and FPGA-based realization of a chaotic secure video communication system. IEEE Trans. Circuits Syst. Video Technol. 28, 2359–2371 (2018)

    Article  Google Scholar 

  4. L. Yin, Z. Deng, B. Huo et al., Finite-time synchronization for chaotic gyros systems with terminal sliding mode control. IEEE Trans. Syst. Man Cybern. Syst. 49, 1131–1140 (2019)

    Article  Google Scholar 

  5. L. Acho, A discrete-time chaotic oscillator based on the logistic map: a secure communication scheme and a simple experiment using Arduino. J. Franklin Institute 352, 3113–3121 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Z.T. Njitacke, N. Tsafack, B. Ramakrishnan et al., Complex dynamics from heterogeneous coupling and electromagnetic effect on two neurons: application in images encryption. Chaos Soliton. Fract. 153, 111577 (2021)

    Article  MathSciNet  Google Scholar 

  7. M. Bakiri, C. Guyeux, J.F. Couchot et al., A hardware and secure pseudorandom generator for constrained devices. IEEE Trans. Ind. Informat. 14, 3754–3765 (2018)

    Article  Google Scholar 

  8. S. Gong, C. Xing, S. Chen et al., Secure communications for dual-polarized MIMO systems. IEEE Trans. Signal Process 65, 4177–4192 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. H.G. Schuster, W. Just, Deterministic Chaos: An Introduction (Wiley, New York, 2006)

    MATH  Google Scholar 

  10. E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. C. Chen, F. Min, Memristive bi-neuron Hopfield neural network with coexisting symmetric behaviors. Eur. Phys. J. Plus 137, 841 (2022)

    Article  Google Scholar 

  12. B. Chen, X. Cheng, H. Bao et al., Initial-condition parameterization and dynamical effect of a dual-memelement-based oscillation circuit. Eur. Phys. J. Plus 137, 1285 (2022)

    Article  Google Scholar 

  13. F. Parastesh, S. Jafari, H. Azarnoush, Traveling patterns in a network of memristor-based oscillators with extreme multistability. Eur. Phys. J. Spec. Top. 228, 2123–2131 (2019)

    Article  Google Scholar 

  14. Z.T. Njitacke, C. Feudjio, V.F. Signing et al., Circuit and microcontroller validation of the extreme multistable dynamics of a memristive jerk system: application to image encryption. Eur. Phys. J. Plus 137, 619 (2022)

    Article  Google Scholar 

  15. P.P. Singh, A. Rai, B.K. Roy, Memristor-based asymmetric extreme multistable hyperchaotic system with a line of equilibria, coexisting attractors, its implementation and nonlinear active-adaptive projective synchronization. Eur. Phys. J. Plus 137, 875 (2022)

    Article  Google Scholar 

  16. X. Liu, Q. Tu, Coexisting and hidden attractors of memristive chaotic systems with and without equilibria. Eur. Phys. J. Plus 137, 516 (2022)

    Article  Google Scholar 

  17. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer, New York, 2003)

    MATH  Google Scholar 

  18. R.S.T. Lee, Chaotic type-2 transient-fuzzy deep neuro-oscillatory network (CT2TFDNN) for worldwide financial prediction. IEEE Trans. Fuzzy Syst. 28, 731–745 (2020)

    Article  Google Scholar 

  19. A.N. Pisarchik, R. Jaimes-Reátegui, C. Rodríguez-Flores et al., Secure chaotic communication based on extreme multistability. J. Franklin Inst. 358, 2561–2575 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. J.S. Muthu, P. Murali, Review of chaos detection techniques performed on chaotic maps and systems in image encryption. SN Comput. Sci. 2, 392 (2021)

    Article  Google Scholar 

  21. S.A. Karthick, R. Sakthivel, C. Aouiti et al., Memory feedback finite-time control for memristive neutral-type neural networks with quantization. Chin. J. Phys. 70, 271–287 (2021)

    Article  MathSciNet  Google Scholar 

  22. H. Bao, M. Hua, J. Ma et al., Offset-control plane coexisting behaviors in two-memristor-based Hopfield neural network. IEEE Trans. Ind. Electron. 70, 10526–10535 (2023)

    Article  Google Scholar 

  23. Z.T. Njitacke, B. Ramakrishnan, K. Rajagopal et al., Extremely rich dynamics of coupled heterogeneous neurons through a Josephson junction synapse. Chaos Soliton. Fract. 164, 112717 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. D.W. Dong, J.J. Hopfield, Dynamic properties of neural networks with adapting synapses. Netw. Comput. Neural. Syst. 3, 267–283 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. C. Li, G. Chen, Coexisting chaotic attractors in a single neuron model with adapting feedback synapse. Chaos Soliton. Fract. 23, 1599–1604 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. B. Bao, Y. Zhu, C. Li et al., Global multistability and analog circuit implementation of an adapting synapse-based neuron model. Nonlinear Dyn. 101, 1105–1118 (2020)

    Article  Google Scholar 

  27. D.L. Berger, L. de Arcangelis, H.J. Herrmann, Spatial features of synaptic adaptation affecting learning performance. Sci. Rep. 7, 11016 (2017)

    Article  ADS  Google Scholar 

  28. B. Bao, Y. Zhu, J. Ma et al., Memristive neuron model with an adapting synapse and its hardware experiments. Sci. China Technol. Sci. 64, 1107–1117 (2021)

    Article  ADS  Google Scholar 

  29. G. Vivekanandhan, H.R. Abdolmohammadi, H. Natiq et al., Dynamic analysis of the discrete fractional-order Rulkov neuron map. Math. Biosci. Eng. 20, 4760–4781 (2023)

    MathSciNet  Google Scholar 

  30. M. Xiao, J.D. Cao, Bifurcation analysis on a discrete-time tabu learning model. J. Comput. Appl. Math 220, 725–738 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Z. Hua, B. Zhou, Y. Zhou, Sine chaotification model for enhancing chaos and its hardware implementation. IEEE Trans. Ind. Electron. 66, 1273–1284 (2019)

    Article  Google Scholar 

  32. Z. Hua, Y. Zhou, B. Bao, Two-dimensional sine chaotification system with hardware implementation. IEEE Trans. Ind. Informat. 16, 887–897 (2020)

    Article  Google Scholar 

  33. X. Zhang, G. Chen, Polynomial maps with hidden complex dynamics. Discrete Cont. Dyn-B. 24, 2941–2954 (2019)

    MathSciNet  MATH  Google Scholar 

  34. S. Panahi, J.C. Sprott, S. Jafari, Two simplest quadratic chaotic maps without equilibrium. Int. J. Bifurc. Chaos 28(12), 1850144 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Jiang, Y. Liu, Z. Wei et al., A new class of two-dimensional chaotic maps with closed curve fixed points. Int. J. Bifurc. Chaos 29, 1950094 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. A.A. Khennaoui, A. Ouannas, S. Boulaaras et al., A fractional map with hidden attractors: chaos and control. Eur. Phys. J. Special Topics 229, 1083–1093 (2020)

    Article  ADS  Google Scholar 

  37. H. Gu, C. Li, Y. Li et al., Various patterns of coexisting attractors in a hyperchaotic map. Nonlinear Dyn. 111, 7807–7818 (2023)

    Article  Google Scholar 

  38. F. Yuan, G. Xing, Y. Deng, Flexible cascade and parallel operations of discrete memristor. Chaos Soliton. Fract. 166, 112888 (2023)

    Article  Google Scholar 

  39. Y. Peng, K. Sun, S. He, A discrete memristor model and its application in Hénon map. Chaos Soliton. Fract. 137, 109873 (2020)

    Article  MATH  Google Scholar 

  40. Y. Deng, Y. Li, Nonparametric bifurcation mechanism in 2-D hyperchaotic discrete memristor-based map. Nonlinear Dyn. 104, 4601–4614 (2021)

    Article  Google Scholar 

  41. K. Rong, H. Bao, H. Li et al., Memristive Hénon map with hidden Neimark-Sacker bifurcations. Nonlinear Dyn. 108, 4459–4470 (2022)

    Article  Google Scholar 

  42. K. Li, H. Bao, H. Li et al., Memristive Rulkov neuron model with magnetic induction effects. IEEE Trans. Ind. Informat. 18, 1726–1736 (2022)

    Article  Google Scholar 

  43. S. Panahi, S. Jafari, A.J.M. Khalaf et al., Complete dynamical analysis of a neuron under magnetic flow effect. Chin. J. Phys. 56, 2254–2264 (2018)

    Article  Google Scholar 

  44. Y. Zhang, P. Zhou, J. Tang et al., Mode selection in a neuron driven by Josephson junction current in presence of magnetic field. Chin. J. Phys. 71, 72–84 (2021)

    Article  MathSciNet  Google Scholar 

  45. X. Zhang, T. Wang, H. Bao et al., Stability effect of load converter on source converter in a cascaded buck converter. IEEE Trans. Power Electron. 38, 604–618 (2023)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the grants from the National Natural Science Foundations of China under 62271088, 62201094, and 52277001, and the Scientific Research Foundation of Jiangsu Provincial Education Department, China, under Grant No. 22KJB510001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bocheng Bao.

Ethics declarations

Conflict of interest

No conflicts of interest about the publication by all authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Bao, H., Wu, H. et al. Complex dynamics in a discrete adaptive synapse-based neuron model. Eur. Phys. J. Plus 138, 545 (2023). https://doi.org/10.1140/epjp/s13360-023-04183-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04183-y

Navigation