Skip to main content
Log in

Review of Chaos Detection Techniques Performed on Chaotic Maps and Systems in Image Encryption

  • Survey Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

The security concern in recent times has been rising exponentially, this has lead for highly secured image transmission. Chaos-based image encryption is increasingly used to protect images with high degree of security than other encryption techniques. Hence, novel chaotic dynamical systems are developed for this purpose with more advanced features and models. Various chaos detection techniques are performed on them to examine and measure their complexity. This paper analyzes the frequency of the chaos tests performed on 25 discrete chaotic maps and 18 continuous chaotic systems and reviewed for their effectiveness. It is observed that the bifurcation diagram and Lyapunov exponent are the most highly used tests for chaotic maps. Whereas, phase portrait and bifurcation diagram are commonly used for chaotic systems. Tests such as 0–1 test, three-state test and some entropy tests are seldom used. Further, the dynamics of the chaotic systems are better studied than the chaotic maps. But in most cases of chaotic maps, the test is performed only for certain random control parameter range, and its dynamics beyond that range is unknown. Hence, it is crucial to realize three important facts. First, a complete examination of the novel system must be performed with the appropriate chaos detection technique. Second, the complete range of the chaotic and non-chaotic region of a system must be presented. Third, the strength of chaos must be examined. These results are essential for generating a highly secured nonlinear key for an encryption algorithm, which makes it resistant to various attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Code Availability

Not applicable.

References

  1. Wang X, Wang S, Zhang Y, Luo C. A one-time pad color image cryptosystem based on SHA-3 and multiple chaotic systems. Opt Lasers Eng. 2018;103:1–8.

    Google Scholar 

  2. Radwan AG, AbdElHaleem SH, Abd-El-Hafiz SK. Symmetric encryption algorithms using chaotic and non-chaotic generators : A review. J Adv Res. 2016;7(2):193–208.

    Google Scholar 

  3. Murugan CA, Karthigaikumar P. Survey on image encryption schemes, bio cryptography and efficient encryption algorithms. Mob Netw Appl. 2018;1–6. https://doi.org/10.1007/s11036-018-1058-3.

  4. Li C, Zhang Y, Yong E. When an attacker meets a cipher-image in 2018: a year in review. J Inf Secur Appl. 2019;48:2361.

    Google Scholar 

  5. Movafegh H, Nodehi A, Enayatifar R. An overview of encryption algorithms in color images. Signal Process. 2019;164:163–85.

    Google Scholar 

  6. Kalpana J, Murali P. An improved color image encryption based on multiple DNA sequence operations with DNA synthetic image and chaos. Optik. 2015;126(24):5703–9.

    Google Scholar 

  7. Chai X, Chen Y, Broyde L. A novel chaos-based image encryption algorithm using DNA sequence operations. Opt Lasers Eng. 2017;88:197–213.

    Google Scholar 

  8. Zarebnia M, Kianfar R, Parvaz R. Multi-color image compression-encryption algorithm based on chaotic system and fuzzy transform. Multimed Tools Appl. 2019;78:10491–511.

    Google Scholar 

  9. Vidhya R, Brindha M. A novel conditional Butterfly Network Topology based chaotic image encryption. J Inf Secur Appl. 2020;52:102484.

    Google Scholar 

  10. Maddodi G, Awad A, Awad D, et al. A new image encryption algorithm based on heterogeneous chaotic neural network generator and DNA encoding. Multimed Tools Appl. 2018;77:24701–25.

    Google Scholar 

  11. Niyat AY, Moattar MH, Torshiz MN. Color image encryption based on hybrid hyper-chaotic system and cellular automata. Opt Lasers Eng. 2017;90(90):225–37.

    Google Scholar 

  12. Sayed WS, Ismail SM, Said LA, Radwan AG. On the fractional order generalized discrete maps. In: Azar AT, Radwan AG, Vaidyanathan S, editors. Mathematical Techniques of Fractional Order Systems. Elsevier Inc.; 2018. https://doi.org/10.1016/B978-0-12-813592-1.00013-1.

  13. Hosny KM. Multimedia security using chaotic maps: principles and methodologies. New York: Springer; 2020.

    Google Scholar 

  14. Özkaynak F. Brief review on application of nonlinear dynamics in image encryption. Nonlinear Dyn. 2018;92(2):305–13.

    Google Scholar 

  15. Tanwar G, Mishra N. Survey on image encryption techniques. Int J Adv Res Comput Sci Softw Eng. 2015;5(12):563–9.

    Google Scholar 

  16. Jain Y, Bansal R, Sharma G, et al. Image encryption schemes : A complete survey. Int J Signal Process Image Process Pattern Recognit. 2016;9(7):157–92.

  17. Younes MAB. Literature survey on different techniques of image encryption. Int J Sci Eng Res. 2016;7(1):93–8.

    Google Scholar 

  18. Kumar HSR, Safeeriya SPF, Aithal G, Shetty S. A survey on key(s) and keyless image encryption techniques. Cybern Inf Technol. 2017;17(4):134–64.

    MathSciNet  Google Scholar 

  19. Sharma M, Kowar MK. Image encryption techniques using chaotic schemes: a review. Int J Eng Sci Technol. 2010;2(6):2359–63.

    Google Scholar 

  20. Srivastava A. A survey report on different techniques of image encryption. Int J Emerg Technol Adv Eng. 2012;2:163–7.

    Google Scholar 

  21. Suneja K, Dua S, Dua M. A review of chaos based image encryption. In: Proc. 3rd Int. Conf. Comput. Methodol. Commun. ICCMC 2019; 2019. pp. 693–8.

  22. Muthu JS, Murali P. Comment on “An image encryption algorithm based on modified logistic chaotic map.” Opt Int J Light Electron Opt. 2019;207:163843.

    Google Scholar 

  23. Han C. An image encryption algorithm based on modified logistic chaotic map. Opt Int J Light Electron Opt. 2019;181:779–85.

    Google Scholar 

  24. Zhou Y, Bao L, Chen CLP. A new 1D chaotic system for image encryption. Signal Process. 2014;97:172–82.

    Google Scholar 

  25. Parvaz R, Zarebnia M. A combination chaotic system and application in color image encryption. Opt Laser Technol. 2018;101:30–41.

    Google Scholar 

  26. Eyebe Fouda JSA, Effa JY, Kom M, Ali M. The three-state test for chaos detection in discrete maps. Appl Soft Comput J. 2013;13(12):4731–7.

    Google Scholar 

  27. Davidovits P. Physics in biology and medicine, 5th edn. Elsevier; 2019. https://doi.org/10.1016/B978-0-12-813716-1.00010-0.

  28. Alligood KT, Sauer TD, Yorke JA. CHAOS : An introduction to dynamical systems. New York: Springer; 1996.

    MATH  Google Scholar 

  29. Szemplinska-Stupnicka W. Chaos, bifurcations and fractals around us. World Sci Ser Nonlinear Sci; 2003. https://doi.org/10.1142/5419.

  30. Zhang Y, He Y, Li P, Wang X. A new color image encryption scheme based on 2DNLCML system and genetic operations. Opt Lasers Eng. 2020;128:106040.

    Google Scholar 

  31. Zhang Y-Q, Wang X-Y. A symmetric image encryption algorithm based on mixed linear–nonlinear coupled map lattice. Inf Sci (N Y). 2014;273:329–51.

    Google Scholar 

  32. Gayathri J, Subashini S. A survey on security and efficiency issues in chaotic image encryption. Int J Inf Comput Secur. 2016;8:347–81.

    Google Scholar 

  33. Suri S, Vijay R. A Pareto-optimal evolutionary approach of image encryption using coupled map lattice and DNA. Neural Comput Appl. 2019. https://doi.org/10.1007/s00521-019-04668-x.

    Article  Google Scholar 

  34. Arumugham S, Rajagopalan S, Rethinam S, et al. Synthetic image and strange attractor: two folded encryption approach for secure image communication. Adv Intell Syst Comput. 2020;1082:467–78.

    Google Scholar 

  35. Xue H, Du J, Li S, Ma W. Region of interest encryption for color images based on a hyperchaotic system with three positive Lyapunov exponents. Opt Laser Technol. 2018;106:506–16.

    Google Scholar 

  36. Çavuşoğlu Ü, Panahi S, Akgül A, et al. A new chaotic system with hidden attractor and its engineering applications: analog circuit realization and image encryption. Analog Integr Circuits Signal Process. 2019;98(1):85–99.

    Google Scholar 

  37. Rüdisüli M, Schildhauer TJ, Biollaz SMA, Van Ommen JR. Fluidized bed technologies for near-zero emission combustion and gasification; 2013. https://doi.org/10.1533/9780857098801.3.813.

  38. Sun KH, Liu X, Zhu CX. The 0–1 test algorithm for chaos and its applications. Chin Phys B. 2010;19(11):7.

    Google Scholar 

  39. Gottwald GA, Melbourne I. The 0–1 test for chaos: a review. Lect Notes Phys. 2016;915:221–47.

    Google Scholar 

  40. Delgado-Bonal A, Marshak A. Approximate entropy and sample entropy: A comprehensive tutorial. MDPI. 2019. https://doi.org/10.3390/e21060541.

    Article  Google Scholar 

  41. Li N, Pan W,Xiang S, , et al. Quantifying the complexity of the chaotic intensity of an external-cavity semiconductor laser via sample entropy. IEEE J Quantum Electron. 2014. https://doi.org/10.1109/JQE.2014.2344691.

    Article  Google Scholar 

  42. Mansouri A, Wang X. A novel one-dimensional sine powered chaotic map and its application in a new image encryption scheme. Inf Sci (N Y). 2020. https://doi.org/10.1016/j.ins.2020.02.008.

    Article  MathSciNet  MATH  Google Scholar 

  43. Xiong H, Shang P, He J, Zhang Y. Complexity and information measures in planar characterization of chaos and noise. Nonlinear Dyn. 2020;100(2):1673–87.

    Google Scholar 

  44. Tucker W. Studies in computational intelligence. Berlin, Heidelberg: Springer; 2008.

    Google Scholar 

  45. Evans DJ, Cohen EGD, Searles DJ, Bonetto F. Note on the Kaplan-Yorke dimension and linear transport coefficients. J Stat Phys. 2000;101(1–2):17–34.

    MathSciNet  MATH  Google Scholar 

  46. Strogatz SH. NonLinear dynamics and chaos. New York: Perseus Books Publishing; 1994.

    Google Scholar 

  47. Fan B, Tang LR. A new five-dimensional hyperchaotic system and its application in DS-CDMA. In: Proceedings - 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2012); 2012. pp. 2069–73.

  48. Hua Z, Zhou B, Zhou Y. Sine chaotification model for enhancing chaos and its hardware implementation. IEEE Trans Ind Electron. 2019;66(2):1273–84.

    MathSciNet  Google Scholar 

  49. Hua Z, Yi S, Zhou Y, et al. Designing hyperchaotic cat maps with any desired number of positive lyapunov exponents. IEEE Trans Cybern. 2018;48(2):463–73.

    Google Scholar 

  50. Gissinger C. A new deterministic model for chaotic reversals. Eur Phys J B. 2012. https://doi.org/10.1140/epjb/e2012-20799-5.

    Article  Google Scholar 

  51. Shi W. Lyapunov exponent analysis to chaotic phenomena of marine power system. IFAC Fault Detect Superv Saf Tech Process.. 2007;2:1497–502.

  52. Fa-Qiang W, Chong-Xin L. Hyperchaos evolved from the Liu chaotic system. Chin Phys. 2006;15(5):0963–1006.

    Google Scholar 

  53. Gottwald GA, Melbourne I, A PRSL. A new test for chaos in deterministic systems. Proceedings R Soc. 2004:603–11. https://doi.org/10.1098/rspa.2003.1183.

  54. Eyebe Fouda JSA, Koepf W. Efficient detection of the quasi-periodic route to chaos in discrete maps by the three-state test. Nonlinear Dyn. 2014;78(2):1477–87.

    MathSciNet  Google Scholar 

  55. Zhou Y, Hua Z, Pun C, Chen CLP. Cascade chaotic system with applications. IEEE Trans Cybern. 2015;45(9):1–12.

    Google Scholar 

  56. Rajagopal K, Akgul A, Moroz IM, et al. A simple chaotic system with topologically different attractors. IEEE Access. 2019;7:89936–47.

    Google Scholar 

  57. Bouslehi H, Seddik H. A new rapid hyperchaotic system for more efficient 2D data encryption. Multimed Tools Appl. 2018;77(6):7741–62.

    Google Scholar 

  58. Dellnitz M, Junge O. Handbook of dynamical systems. Amsterdam: Elsevier B.V; 2002.

    MATH  Google Scholar 

  59. Pareek NK, Patidar V, Sud KK. Image encryption using chaotic logistic map. Image Vis Comput. 2006;24(9):926–34.

    Google Scholar 

  60. de Carvalho RE, Leonel ED. Squared sine logistic map. Phys A Stat Mech Appl. 2016;463:37–44.

    MathSciNet  MATH  Google Scholar 

  61. Krishnamoorthi R, Murali P. A selective image encryption based on square-wave shuffling with orthogonal polynomials transformation suitable for mobile devices. Multimed Tools Appl. 2017;76(1):1217–46.

    Google Scholar 

  62. Bhatnagar G, Wu QMJ. Selective image encryption based on pixels of interest and singular value decomposition. Digit Signal Process. 2012;1:1–16.

    MathSciNet  Google Scholar 

  63. Li C, Luo G, Qin K. An image encryption scheme based on chaotic tent map. Nonlinear Dyn. 2017;87(1):127–33.

    Google Scholar 

  64. Liu H, Wang X. Image encryption using DNA complementary rule and chaotic maps. Appl Soft Comput J. 2012;12(5):1457–66.

    Google Scholar 

  65. Hua Z, Zhou Y, Huang H. Cosine-transform-based chaotic system for image encryption. Inf Sci (NY). 2019;480:403–19.

  66. Chen F, Wong K, Liao X, Xiang T. Period distribution of generalized discrete Arnold cat map. Theor Comput Sci. 2014;552:13–25.

    MathSciNet  MATH  Google Scholar 

  67. Yosefnezhad B, Peyman I, Jabalkandi FA, et al. Digital image scrambling based on a new one-dimensional coupled Sine map Behzad. Nonlinear Dyn. 2019;97:2693–721.

    MATH  Google Scholar 

  68. Wu J, Liao X, Yang B. Image encryption using 2D Henon—Sine map and DNA approach. Signal Process. 2018. https://doi.org/10.1016/j.sigpro.2018.06.008.

    Article  Google Scholar 

  69. Chen G, Mao Y, Chui CK. A symmetric image encryption scheme based on 3D chaotic cat maps. 2004;21:749–61.

  70. Cao C, Sun K, Liu W. A novel bit-level image encryption algorithm based on 2D-LICM hyperchaotic map. Signal Process. 2017. https://doi.org/10.1016/j.sigpro.2017.08.020.

    Article  Google Scholar 

  71. Zahmoul R, Ejbali R, Zaied M. Image encryption based on new Beta chaotic maps. Opt Lasers Eng. 2017;96(April):39–49.

    Google Scholar 

  72. Hanis S, Amutha R. A fast double-keyed authenticated image encryption scheme using an improved chaotic map and a butterfly-like structure. Nonlinear Dyn. 2018;95:421–32.

    Google Scholar 

  73. Chen C, Sun K, He S. A class of higher-dimensional hyperchaotic maps. Eur Phys J Plus. 2019. https://doi.org/10.1140/epjp/i2019-12776-9.

    Article  Google Scholar 

  74. Attaullah, Shah T, Jamal SS. An improved chaotic cryptosystem for image encryption and digital watermarking. Wirel Pers Commun. 2020;110(3):1429–42.

  75. Gupta A, Singh D, Kaur M. An efficient image encryption using non-dominated sorting genetic algorithm—III based 4—D chaotic maps. J Ambient Intell Humaniz Comput. 2019. https://doi.org/10.1007/s12652-019-01493-x.

    Article  Google Scholar 

  76. Kudryashov NA. Analytical Solutions of the Lorenz System. Regul Chaotic Dyn. 2015;20(2):123–33.

    MathSciNet  MATH  Google Scholar 

  77. Jia Q. Hyperchaos generated from the Lorenz chaotic system and its control. Phys Lett A. 2007;366:217–22.

    MATH  Google Scholar 

  78. Rossler OE. An equation for continuous chaos. Phys Lett. 1976;57A(5):397–8. https://doi.org/10.1016/0375-9601(76)90101-8.

  79. Rossler OE. An equation for hyperchaos. Phys Lett. 1979;71A(23):155–7.

    MathSciNet  MATH  Google Scholar 

  80. Xi H, Yu S, Zhang Z, Deng K. Generation of hyperchaotic Chua system via state feedback control. In: 2010 International Workshop on Chaos-fractals Theories and Applications. IEEE; 2010. https://doi.org/10.1109/IWCFTA.2010.45.

  81. Yang F, Mou J, Ma C, Cao Y. Dynamic analysis of an improper fractional-order laser chaotic system and its image encryption application. Opt Lasers Eng. 2020;129:106031.

    Google Scholar 

  82. Dong E, Yuan M, Du S, Chen Z. A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator. Appl Math Model. 2019;73:40–71.

    MathSciNet  MATH  Google Scholar 

  83. Zhou M, Wang C. A novel image encryption scheme based on conservative hyperchaotic system and closed-loop diffusion between blocks. Signal Process. 2020;171:107484.

    Google Scholar 

  84. Zarei A. Complex dynamics in a 5-D hyper-chaotic attractor with four-wing, one equilibrium and multiple chaotic attractors. Nonlinear Dyn. 2015;81:585–605.

    MathSciNet  MATH  Google Scholar 

  85. Li Y, Wang C, Chen H. A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level permutation. Opt Lasers Eng. 2017;90:238–46.

    Google Scholar 

  86. Lu J, Guanrong C. A new chaotic attractor coined. Int J Bifurc Chaos. 2002;12(3):659–61.

    MathSciNet  MATH  Google Scholar 

  87. Yuan H, Liu Y, Lin T, et al. A new parallel image cryptosystem based on 5D hyper-chaotic system. Signal Process Image Commun. 2017;52:87–96.

    Google Scholar 

  88. Gao T, Chen Z. A new image encryption algorithm based on hyper-chaos. Phys Lett A. 2008;372:394–400.

    MATH  Google Scholar 

  89. Liu C, Liu T, Liu L, Liu K. A new chaotic attractor. Chaos Solitons Fract. 2004;22(5):1031–8.

    MathSciNet  MATH  Google Scholar 

  90. Vaidyanathan S, Volos C, Pham V. Hyperchaos, adaptive control and synchronization of a novel 5-D hyperchaotic system with three positive Lyapunov exponents and its SPICE implementation. Arch Control Sci. 2014;24(4):409–46.

    MathSciNet  MATH  Google Scholar 

  91. Chai X, Gan Z, Yang K, et al. An image encryption algorithm based on the memristive hyperchaotic system, cellular automata and DNA sequence operations. Signal Process Image Commun. 2017;52:6–19.

    Google Scholar 

  92. Cang S, Qi G, Chen Z. A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system. Nonlinear Dyn. 2010;59(3):515–27.

    MathSciNet  MATH  Google Scholar 

  93. Peng ZW, Yu WX, Wang JN, et al. Dynamic analysis of seven-dimensional fractional-order chaotic system and its application in encrypted communication. J Ambient Intell Humaniz Comput. 2020. https://doi.org/10.1007/s12652-020-01896-1.

    Article  Google Scholar 

  94. Murali P, Sankaradass V. An efficient space filling curve based image encryption. Multimed Tools Appl. 2019;78(2):2135–56.

    Google Scholar 

  95. Muthu JS, Paul AJ, Murali P. An efficient analyses of the behavior of one dimensional chaotic maps using 0–1 test and three state test. IEEE Recent Adv Intell Comput Syst. 2020;2020:125–30. https://doi.org/10.1109/RAICS51191.2020.9332470.

    Article  Google Scholar 

  96. Muthu JS, Murali P. A new chaotic map with large chaotic band for a secured image cryptosystem. Opt Int J Light Electron Opt. 2021;242:242167300. https://doi.org/10.1016/j.ijleo.2021.167300.

    Article  Google Scholar 

  97. Lalwani P, Banka H, Kumar C. BERA: a biogeography-based energy saving routing architecture for wireless sensor networks. Soft Comput. 2018;22:1651–67. https://doi.org/10.1007/s00500-016-2429-y.

    Article  Google Scholar 

  98. Lalwani P, Das S, Banka H. CRHS: clustering and routing in wireless sensor networks using harmony search algorithm. Neural Comput Applic. 2018;30:639–59. https://doi.org/10.1007/s00521-016-2662-4.

    Article  Google Scholar 

  99. Lalwani P, Banka H, Kumar C. CRWO: Clustering and routing in wireless sensor networks using optics inspired optimization. Peer Peer Netw Appl. 2017;10:453–71. https://doi.org/10.1007/s12083-016-0531-7.

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan S. Muthu.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Availability of Data and Material and Code

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthu, J.S., Murali, P. Review of Chaos Detection Techniques Performed on Chaotic Maps and Systems in Image Encryption. SN COMPUT. SCI. 2, 392 (2021). https://doi.org/10.1007/s42979-021-00778-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-021-00778-3

Keywords

Navigation