Skip to main content
Log in

Higher-order phase-space moments for Morse oscillators and their harmonic limit

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

An explicit and general formula for (ml) diagonal higher-order phase-space moments (i.e. matrix elements) \(\langle {\hat{x}}^m{\hat{p}}^l\rangle\) for the Morse oscillator potential is presented. We show that this formula is more extended than those currently available in the literature and can be carried out using a phase-space Wigner distribution function in conjunction with its characteristic function. In the case it is wanted, the obtained formula gives the explicit form of the expected values of position and momentum in terms of the potential parameters. The validity of these expressions is tested by giving a numerical comparison with those obtained by other approximations. Moreover, it makes it possible to approach straightforwardly the harmonic limit of the Morse oscillator potential using the Heisenberg uncertainty product. We show indeed that when changing the potential depth, a common pattern emerges as a linear behavior on n in the form \((\Delta x)_n(\Delta p)_n\sim n+1/2\), applied to all levels \(n=0,1,2,\ldots\), indicating the signature of the so-called harmonic limit of the Morse oscillator potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. P.M. Morse, Phys. Rev. 34, 57 (1929)

    Article  ADS  Google Scholar 

  2. P. Jensen, Mod. Phys. 98, 1253 (2000)

    ADS  Google Scholar 

  3. L. Pauling, E.B. Wilson Jr., Introduction to Quantum Mechanics with Application to Chemistry (Dover, New York, 1985)

    Google Scholar 

  4. N. Kandirmaz, R. Sever, Phys. Scr. 81, 035302 (2010)

    Article  ADS  Google Scholar 

  5. L. Chetouani, T.F. Hammann, Nuovo Cim. B 92, 106 (1986)

    Article  ADS  Google Scholar 

  6. C. Grosche, Ann. Phys. 187, 110 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  7. S.-H. Dong, Factorization Methods in Quantum Mechanics (Springer, Dordrech, 2007)

    Book  Google Scholar 

  8. G. Junker, Supersymmetric Methods in Quantum and Statistical Physics (Springer, Berlin, 1986)

    MATH  Google Scholar 

  9. S.-A. Yahiaoui, S. Hattou, M. Bentaiba, Ann. Phys. 322, 2733 (2007)

    Article  ADS  Google Scholar 

  10. E. Drigo-Filho, R.M. Ricotta, Phys. Lett. A 269, 269 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. M.M. Nieto, L.M. Simmons, Phys. Rev. A 19, 438 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Angelova, A. Hertz, V. Hussin, J. Phys. A: Math. Theor. 45, 244007 (2012)

    Article  ADS  Google Scholar 

  13. O. de los Santos-Sánchez, J. Récamier, J. Phys. A: Math. Theor. 46, 375303 (2013)

    Article  Google Scholar 

  14. A. Belfakir, Y. Hassouni, E.M.F. Curado, Phys. Lett. A 384, 126553 (2020)

    Article  MathSciNet  Google Scholar 

  15. Z.-Q. Ma, B.-W. Xu, Europhys. Lett. 69, 685 (2005)

    Article  ADS  Google Scholar 

  16. B.J. Falaye, S.M. Ikhdair, M. Hamzavi, Z. Naturforsh 70, 85 (2015)

    Article  ADS  Google Scholar 

  17. W.-C. Qiang, S.-H. Dong, Phys. Lett. A 363, 169 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  18. D.A. Morales, Chem. Phys. Lett. 161, 253 (1984)

    Article  ADS  Google Scholar 

  19. M. Bag, M.M. Panja, R. Dutt, Phys. Rev. A 46, 6059 (1992)

    Article  ADS  Google Scholar 

  20. Y. Alhassid, F. Iachello, F. Gürsey, Chem. Phys. Lett. 99, 27 (1983)

    Article  ADS  Google Scholar 

  21. S.-H. Dong, Y. Tang, G.-H. Sun, Phys. Lett. A 320, 145 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  22. J. de Souza, N.M. Oliveira, C.I. Ribeiro-Silva, Euro. Phys. J. D 40, 205 (2006)

    Article  ADS  Google Scholar 

  23. C. Quesne, J. Math. Phys. 49, 022106 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  24. O. Bayrak, I. Boztosun, J. Mol. Struct. 802, 17 (2007)

    Article  Google Scholar 

  25. O. Bayrak, I. Boztosun, J. Phys. A: Math. Gen. 39, 6955 (2006)

    Article  ADS  Google Scholar 

  26. T. Barakat, K. Abodayeh, O.M. Al-Dossary, Czech J. Phys. 56, 583 (2006)

    Article  ADS  Google Scholar 

  27. S. Miraboutalabi, L. Rajaei, J. Math. Chem. 52, 1119 (2014)

    Article  MathSciNet  Google Scholar 

  28. G. Chen, Phys. Lett. A 326, 55 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  29. A. Arda, R. Sever, Commun. Theor. Phys. 58, 27 (2012)

    Article  ADS  Google Scholar 

  30. M. Znojil, Phys. Lett. A 264, 118 (1999)

    Article  ADS  Google Scholar 

  31. M. Aktaş, R. Sever, Mod. Phys. Lett. A 19, 2871 (2004)

    Article  ADS  Google Scholar 

  32. Ö. Yeṣiltas, M. Ṣimṣek, R. Sever, C. Tezcan, Phys. Scr. T67, 472 (2003)

    Article  Google Scholar 

  33. C. Berkdemir, J. Han, Chem. Phys. Lett. 409, 203 (2005)

    Article  ADS  Google Scholar 

  34. A. Arda, R. Sever, Few-Body Syst. 55, 265 (2014)

    Article  ADS  Google Scholar 

  35. B. Bagchi, P.S. Gorain, C. Quesne, Mod. Phys. Lett. A 21, 2703 (2006)

    Article  ADS  Google Scholar 

  36. Y. Hamdouni, J. Phys. A: Math. Theor. 44, 385301 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  37. S.M. Ikhdair, Mod. Phys. 110, 1415 (2012)

    ADS  Google Scholar 

  38. J.A.C. Gallas, Phys. Rev. A 21, 1829 (1980)

    Article  ADS  Google Scholar 

  39. M.M. Nieto, Phys. Rev. A 20, 700 (1979)

    Article  ADS  Google Scholar 

  40. A. Requena, A. López Piñeiro, B. Moreno, Phys. Rev. A 34, 4380 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  41. I.R. Elsum, R.G. Gordon, J. Chem. Phys. 76, 5452 (1982)

    Article  ADS  Google Scholar 

  42. V.S. Vasan, R.J. Cross, J. Chem. Phys. 78, 3869 (1983)

    Article  ADS  Google Scholar 

  43. R.H. Tipping, J.F. Ogilvie, J. Chem. Phys. 79, 2537 (1983)

    Article  ADS  Google Scholar 

  44. R.N. Costa-Filho, G. Alencar, B.-S. Skagerstam, J.S. Andrade Jr., Eur. Phys. Lett. 101, 10009 (2013)

    Article  ADS  Google Scholar 

  45. C.K. Zachos, D.B. Fairlie, T.Y. Curtnight, Quantum Mechanics in Phase-Space. An Overview With Selected Papers (Scientific World, Singapore, 2005)

    Book  Google Scholar 

  46. S. de Groot, La transformation de Weyl et la fonction de Wigner: une forme alternative de la mécanique quantique (Les presses de l’université de Montréal, Montréal, 1975)

    Google Scholar 

  47. M. Hillary, R.F. O’Connell, M.O. Scully, E.P. Wigner, Phys. Rep. 106, 121 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  48. H.-X. Lee, Phys. Rep. 259, 147 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  49. A.M. Ozorio de Almeida, Phys. Rep. 295, 265 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  50. W.B. Case, Am. J. Phys. 76, 937 (2008)

    Article  ADS  Google Scholar 

  51. A. Franck, A.L. Rivera, K.B. Wolf, Phys. Rev. A 61, 054102 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  52. P.A. Mello, M. Revzen, Phys. Rev. A 89, 012106 (2013)

    Article  ADS  Google Scholar 

  53. D. Sels, F. Brosens, Phys. Rev. E 88, 042101 (2013)

    Article  ADS  Google Scholar 

  54. D.I. Bondar, R. Cabrera, D.V. Zhdanov, H.A. Rabitz, Phys. Rev. A 88, 052108 (2013)

    Article  ADS  Google Scholar 

  55. J. van der Jeugt, J. Phys. A: Math. Theor. 46, 475302 (2013)

    Article  Google Scholar 

  56. E.I. Jafarov, S. Lievens, S.M. Nagiyev, J. van der Jeugt, J. Phys. A: Math. Theor. 40, 5427 (2007)

    Article  ADS  Google Scholar 

  57. Z.-D. Chen, G. Chen, Phys. Scr. 73, 354 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  58. A. de Souza-Dutra, J.A. de Oliveira, Phys. Scr. 78, 035009 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  59. S.-H. Dong, G.-H. Sun, J. Yu, Phys. Scr. 70, 207 (2004)

    Article  ADS  Google Scholar 

  60. U. Herzog, H. Paul, Th. Richter, Phys. Scr. T48, 61 (1993)

    Article  ADS  Google Scholar 

  61. O. Cherroud, S.-A. Yahiaoui, M. Bentaiba, J. Math. Phys. 58, 063503 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  62. J.P. Dahl, M. Springborg, J. Chem. Phys. 88, 4535 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  63. S. Olivares, Phys. Lett. A 418, 127720 (2021)

    Article  Google Scholar 

  64. A. Ferraro, S. Olivares, M.G.A. Paris, Gaussian States in Quantum Informations (Bibliopolis, Napoli, 2005)

    Google Scholar 

  65. D. Popov, Phys. Scr. 63, 257 (2001)

    Article  ADS  Google Scholar 

  66. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products (Academic Press, New York, 2007)

    MATH  Google Scholar 

  67. S.-A. Yahiaoui, M. Bentaiba, J. Math. Phys. 59, 023510 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  68. NIST Handbook of Mathematical Functions, Edited by: F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, (Cambridge University Press, New York, 2010)

  69. G.B. Arfken, H.J. Weber, F.E. Harris, Mathematical Methods for Physicists. A Comprehensive Guide (Academic Press, New York, 2013)

    MATH  Google Scholar 

  70. E.F. de Lima, J.E.M. Hornos, J. Phys. B: At. Mol. Opt. Phys. 38, 815 (2005)

    Article  ADS  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sid-Ahmed Yahiaoui.

Additional information

This paper is dedicated to the memory of Professor Mustapha Bentaiba, beloved friend and esteemed colleague and teacher, who passed away on December 3rd, 2018.

Appendices

Appendix A: Evaluation of some summations

In this appendix, we will evaluate some summations involving products of \(\Theta\)’s with \(l_1^kl_2^m\), i.e.

$$\begin{aligned} \Sigma _{n,N}^{k,m} = \sum _{l_1=0}^n\sum _{l_2=0}^n l_1^kl_2^m \Theta _{l_1,l_2}^{n,N}, \end{aligned}$$

for \(k,m=0,1,2,\ldots\) It is obvious that the case \(k=m=0\) concerns the proof of the normalized-summation given by Eq. (6), while other cases lead to evaluate, among others, Eqs. (39) and (40).

Case \(k=m=0\). In this case, let us substitute the expression of \(\Theta _{l_1,l_2}^{n,N}\) into Eq. (6), we get:

$$\begin{aligned} \Sigma _{n,N}^{0,0}& = {} \frac{2(N-n)\Gamma (2N-n+1)}{n!}\sum _{l_1=0}^n\frac{(-1)^{l_1}}{\Gamma (2N-2n+l_1+1)}\left( {\begin{array}{c}n\\ l_1\end{array}}\right) \nonumber \\{} & {}\quad \times \left[ \sum _{l_2=0}^n (-1)^{l_2}\left( {\begin{array}{c}n\\ l_2\end{array}}\right) \frac{\Gamma (l_2+2N-2n+l_1)}{\Gamma (l_2+2N-2n+1)}\right] \nonumber \\& = {} \frac{2(N-n)}{n!}\sum _{l_1=0}^n\frac{(-1)^{l_1}}{2N-2n+l_1}\displaystyle \left( {\begin{array}{c}n\\ l_1\end{array}}\right) \frac{\Gamma (n-l_1+1)}{\Gamma (1-l_1)}, \end{aligned}$$
(A1)

where we have used the entry 0.160(2) of Ref. [66], i.e.

$$\begin{aligned} \sum _{r=0}^{n}(-1)^r \left( {\begin{array}{c}n\\ r\end{array}}\right) \frac{\Gamma (r+b)}{\Gamma (r+a)}=\frac{B(n+a-b,b)}{\Gamma (a-b)}, \end{aligned}$$
(A2)

to evaluate the \(l_2\)-summation and B denotes the Eulerian beta-function. Let us decompose Eq. (A1) into its components as follows:

$$\begin{aligned} \Sigma _{n,N}^{0,0}& = {} \frac{2N-2n}{n!}\bigg [\frac{\Gamma (n+1)}{2N-2n}-\frac{1}{2N-2n+1}\frac{\Gamma (n+1)}{\Gamma (0)} \nonumber \\{} & {} \qquad+\frac{1}{\pi }\sum _{l_1=2}^n (-1)^{l_1}\left( {\begin{array}{c}n\\ l_1\end{array}}\right) \frac{\Gamma (l_1)\Gamma (n-l_1+1)}{2N-2n+l_1}\,\sin \pi l_1\bigg ] \nonumber \\& = {} \frac{2N-2n}{n!}\left[ \frac{\Gamma (n+1)}{2N-2n}-\frac{1}{2N-2n+1}\frac{\Gamma (n+1)}{\Gamma (0)}\right] , \end{aligned}$$
(A3)

where we have used the reflection formula \(\Gamma (k)\Gamma (1-k)=\pi /\sin k\pi\) in the last summation which vanishes because \(l_1\) was restricted to integer-values. Noting that \((-n)_n\equiv \Gamma (0)/\Gamma (-n)=(-1)^n\Gamma (n+1)\) and using once more the reflection formula, i.e. \(\Gamma (-n)\Gamma (n+1)=-\pi /\sin n\pi\), then Eq. (A3) is reduced to

$$\begin{aligned} \sum _{l_1=0}^n\sum _{l_2=0}^n\Theta _{l_1,l_2}^{n,N}& = {} \frac{2(N-n)}{n!}\left[ \frac{\Gamma (n+1)}{2N-2n}+\frac{(-1)^n}{\pi }\frac{\Gamma (n+1)}{2N-2n+1}\,\sin n\pi \right] , \nonumber \\& = {} 1, \end{aligned}$$
(A4)

since \(\sin n\pi =0\), for all positive-integers n. This complete the demonstration of the normalized-summation (6) from which aim the normalization of Wigner’s distribution function.

Cases \(k\ne 0,m=0\) or \(k=0,m\ne 0\). These particular cases lead to evaluate the terms that arise in Eqs. (39) and (40). Both cases are equivalent since all \(\Theta\)’s are invariant under permutation of \(l_1\) and \(l_2\). For this purpose, the use of Eq. (A3) and the identity \(\Gamma (0)=(-1)^n\Gamma (-n)\Gamma (n+1)=-\pi (-1)^n/\sin n\pi\) lead to express \(\Sigma _{n,N}^{k,0}\) as follows:

$$\begin{aligned} \Sigma _{n,N}^{k,0}& = \; \frac{2(N-n)}{n!}\bigg [\frac{\Gamma (n+1)}{2N-2n}\,l_1^k\bigg \vert _{l_1=0} -\frac{l_1^k}{2N-2n+1}\frac{\Gamma (n+1)}{\Gamma (0)}\bigg \vert _{l_1=1} \nonumber \\ &\; \qquad+\frac{1}{\pi }\sum _{l_1=2}^n (-1)^{l_1}l_1^k\left( {\begin{array}{c}n\\ l_1\end{array}}\right) \frac{\Gamma (l_1)\Gamma (n-l_1+1)}{2N-2n+l_1}\,\sin \pi l_1\bigg ] \nonumber \\ & = \; \frac{2(N-n)}{2N-2n+1}\,(-1)^n\frac{\sin n\pi }{\pi }\nonumber \\& = \; 0, \end{aligned}$$
(A5)

applied for all \(n\in {\mathbb {N}}\) and for all \(k\ne 0\). The same value is obtained for \(\Sigma _{n,N}^{0,m}\).

Case \(k=m=1\). This case makes it possible to evaluate the remaining-mixed term \(l_1l_2\) involved in Eq. (40). By reducing the product \(l_1l_2\) with both binomials and using Eq. (A2), the decomposition on its components gives

$$\begin{aligned} \Sigma _{n,N}^{1,1}& = \; \frac{2(N-n)\,n^2}{n!}\sum _{l_1=0}^{n-1}(-1)^{l_1}\left( {\begin{array}{c}n-1\\ l_1\end{array}}\right) \frac{\Gamma (n-l_1-1)}{\Gamma (-l_1)}\nonumber \\ & = \; \frac{2(N-n)\,n^2}{n!}\bigg [\frac{\Gamma (n-1)}{\Gamma (0)}+\sum _{l_1=1}^{n-2}(-1)^{l_1}\left( {\begin{array}{c}n-1\\ l_1\end{array}}\right) \frac{\Gamma (n-l_1-1)}{\Gamma (-l_1)} \nonumber \\ &\qquad \; +(-1)^{n-1}\frac{\Gamma (0)}{\Gamma (1-n)}\bigg ], \end{aligned}$$
(A6)

and according to the relation \(\Gamma (0)=(-1)^n\Gamma (-n)\Gamma (n+1)=-\pi (-1)^n/\sin n\pi\) used hereinabove, the first-term and the summation in Eq. (A6) vanish, while the last-term gives

$$\begin{aligned}\Sigma_{n,N}^{1,1} = \frac{2(N-n)\,n^2}{n!}(-1)^{n-1}(-1)^{n-1}\Gamma (n) \equiv 2n(N-n). \end{aligned}$$
(A7)

Both Eqs. (A5) and (A7) give the expected value established in Eq. (40).

Appendix B: Derivation of Eqs. (11) and (12)

In this appendix, we will provide the derivation of Eqs. (11) and (12). To this end, let us recall (as given in the text) that \(f_{\beta ',\lambda }(y)=\Gamma (\beta )\,e^{i \lambda y}\), with \(\beta (y)=\beta '-i y\), and choosing to define \(f_{\beta ',\lambda }(y)\) as a composite-function

$$\begin{aligned} f_{\beta ',\lambda }(y):=f_{\beta ',\lambda }\circ h(\beta )\equiv e^{h(\beta )}=\Gamma (\beta )\,e^{i \lambda y}, \end{aligned}$$
(B8)

where \(h(\beta )=\ln \Gamma (\beta )-\lambda \beta +C\) and \(C=\lambda \beta '\). Because the involved \(\beta\)-function is imaginary-linear in y, then the m-fold differentiation of \(f_{\beta ',\lambda }(y)\) with respect to the variable y can be expressed as

$$\begin{aligned} \frac{\partial ^m}{\partial y^m}\,f_{\beta ',\lambda }(y) \equiv \frac{\partial ^m\beta }{\partial y^m}\frac{\partial ^m}{\partial \beta ^m} \,f_{\beta ',\lambda }\circ h(\beta ) = (-i)^m \,\frac{\partial ^m}{\partial \beta ^m} \,f_{\beta ',\lambda }\circ h(\beta ). \end{aligned}$$
(B9)

Now in order to evaluate properly Eq. (B9), we will use the Faà di Bruno formula (see, for instance, Ref. [67]) which has been applied suitably to a composite-function \(f_{\beta ',\lambda }\circ h(\beta )=f_{\beta ',\lambda }[h(\beta )]\) in order to compute its mth-derivative in terms of derivatives of \(f_{\beta ',\lambda }\) and h. It is written in the form

$$\begin{aligned} \frac{\partial ^m}{\partial \beta ^m}\,f_{\beta ',\lambda }\circ h(\beta )= \sum _{L\in \tau }\frac{m!}{\mu _1!\mu _2!\cdots \mu _m!}\left( \frac{\partial ^Lf_{\beta ',\lambda }}{\partial h^L(\beta )}\,\circ h(\beta )\right) \prod _{s=1}^m\left( \frac{h^{(s)}(\beta )}{s!}\right) ^{\mu _s}, \end{aligned}$$
(B10)

where the summation ranges over the set

$$\begin{aligned} \tau =\left\{ \mu _s\in {\mathbb {N}},\ \sum _{s=1}^ms\mu _s=m\quad \textrm{and}\quad \sum _{s=1}^m\mu _s=L\right\} , \end{aligned}$$

with \(L=1,2,\ldots ,m\). Then from Eq. (B8), it follows straightforwardly that

$$\begin{aligned} \frac{\partial ^Lf_{\beta ',\lambda }}{\partial h^L}\,\circ h(\beta ) \equiv \frac{d^L}{d h^L}\,e^{h(\beta )} = \frac{d^{L-1}}{d h^{L-1}}\,e^{h(\beta )} =\cdots = \frac{d^2}{d h^2}\,e^{h(\beta )} = \frac{d}{d h}\,e^{h(\beta )} = e^{h(\beta )}, \end{aligned}$$
(B11)

where it is easy to verify that successive derivations of \(h(\beta )\) give the mth-derivative of \(h(\beta )\), i.e.

$$\begin{aligned} h'(\beta ) & = \; \frac{d}{d\beta }[\ln \Gamma (\beta )-\lambda \beta +C]=\psi (\beta )-\lambda \equiv \psi _\lambda (\beta ), \\ h''(\beta ) & = \; \psi '(\beta ),\qquad \ldots , \qquad h^{(m)}(\beta )=\psi ^{(m-1)}(\beta ), \end{aligned}$$

where \(\psi ^{(m)}(\beta )\) refer to polygamma functions of the differentiation-order m and \(\psi (\beta )\) denotes the digamma function. These considerations lead us to recast Eq. (B9), using Eq. (B10), as follows:

$$\begin{aligned} \frac{\partial ^m}{\partial y^m}\,f_{\beta ',\lambda }(y) & = \; (-i)^m \sum _{L\in \tau }\frac{m!}{\mu _1!}\,\psi _\lambda ^{\mu _1}(\beta )\prod _{s=2}^m\frac{1}{\mu _s!}\left[ \frac{\psi ^{(s-1)}(\beta )}{s!}\right] ^{\mu _s} \Gamma (\beta )\,e^{i \lambda y} \nonumber \\ & = \; (-i)^m\,\Xi ^{(m)}[\beta (y)]\,f_{\beta ',\lambda }(y), \end{aligned}$$
(B12)

which is Eq. (10) and making further identifications in Eq. (B12), the functional \(\Xi ^{(m)}[\beta (y)]\) is expressed by

$$\begin{aligned} \Xi ^{(m)}[\beta (y)]=\sum _{L\in \tau } \mathcal C_{\mu _1,\mu _2,\ldots ,\mu _m}^{(m)}\psi _\lambda ^{\mu _1}(\beta ) \prod _{s=2}^m\left[ \psi ^{(s-1)}(\beta )\right] ^{\mu _s}, \end{aligned}$$
(B13)

where the coefficients \({\mathcal {C}}_{\mu _1,\mu _2,\ldots ,\mu _m}^{(m)}\) are identified, from Eqs. (B12) and (B13), as follows:

$$\begin{aligned} {\mathcal {C}}_{\mu _1,\mu _2,\ldots ,\mu _m}^{(m)} = m!\prod _{s=1}^m \frac{1}{\mu _s!}\left( \frac{1}{s!}\right) ^{\mu _s}. \end{aligned}$$
(B14)

This completes the determination of Eqs. (11) and (12).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherroud, O., Yahiaoui, SA. Higher-order phase-space moments for Morse oscillators and their harmonic limit. Eur. Phys. J. Plus 138, 534 (2023). https://doi.org/10.1140/epjp/s13360-023-04164-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04164-1

Navigation