Skip to main content
Log in

Dust-acoustic Rossby waves in magnetized plasma

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The proliferation of dust-acoustic nonlinear electrostatic waves in dusty plasma bound to nonthermal electrons and trapped nonthermal ions have been studied. The fluid hydrodynamic equations for dust fluid combined with appropriate electrons and ions distributions have been used to derive an evolution equation called a nonlinear Schrödinger equation. The rogue wave solution of the latter is used to describe a bright envelope soliton that can transform to Rossby structure at certain magnetic field strength and directional cosine. This work provides a theoretical aspects of Rossby waves, bright envelope soliton, and rogue waves on different spatial in the context of Earth magnetosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

The data are available in references 9 and 30.

References

  1. P.K. Shukla, A. Mamun, Introduction to dusty plasma physics (CRC Press, New York, 2001)

    Google Scholar 

  2. C. Goertz, Rev. Geophys. 27, 271 (1989)

    Article  ADS  Google Scholar 

  3. F.C. Michel, Theory of neutron star magnetospheres, (University of Chicago Press, 1991)

  4. F.C. Michel, Rev. Mod. Phys. 54, 1 (1982)

    Article  ADS  Google Scholar 

  5. D. Mendis, M. Rosenberg, Annu. Rev. Astron. Astrophys. 32, 419–463 (1994)

    Article  ADS  Google Scholar 

  6. T. Northrop, T. Birmingham, Planet. Space Sci. 38, 319 (1990)

    Article  ADS  Google Scholar 

  7. H.-F. Liu, S.-Q. Wang, Z.-H. Wang, C.-Z. Li, L. Yao, F.-Z. Yang, Phys. Plasmas 18, 044501 (2011)

    Article  ADS  Google Scholar 

  8. S. Khrapak, A. Ivlev, V. Yaroshenko, G. Morfill, Phys. Rev. Lett. 102, 245004 (2009)

    Article  ADS  Google Scholar 

  9. S.K. El-Labany, W.F. El-Taibany, N.A. El-Bedwehy, N.A. Zedan, Plasma Phys. Rep. 43, 756 (2017). https://doi.org/10.1134/S1063780X17070042

    Article  ADS  Google Scholar 

  10. S.K. El-Labany, W.F. El-Taibany, E. El-Shamy, A. El-Depsy, N.A. Zedan, Phys. Plasmas 19, 103708 (2012)

    Article  ADS  Google Scholar 

  11. Y.D. Jung, Phys. Plasmas 8, 3842 (2001)

    Article  ADS  Google Scholar 

  12. G. Manfredi, F. Haas, Phys. Rev. B 64, 075316 (2001)

    Article  ADS  Google Scholar 

  13. P.K. Shukla, B. Eliasson, Phys. Usp. 53, 51 (2010)

    Article  ADS  Google Scholar 

  14. B. Eliasson, P.K. Shukla, Plasma Fusion Res. 4, 032 (2009)

    Article  ADS  Google Scholar 

  15. W. Masood, B. Eliasson, Phys. Plasmas 18, 034503 (2011)

    Article  ADS  Google Scholar 

  16. A. Abdikian, M. Bagheri, Phys. Plasmas 20, 102103 (2013)

    Article  ADS  Google Scholar 

  17. A. Abdikian, Phys. Plasmas 24, 052123 (2017)

    Article  ADS  Google Scholar 

  18. A. Abdikian, S. Ismaeel, Eur. Phys. J. Plus 132, 368 (2017)

    Article  Google Scholar 

  19. P. Schippers, M. Blanc, N. André, I. Dandouras, G. Lewis, L. Gilbert, A. Persoon, N. Krupp, D. Gurnett, A. Coates, J. Geophys. Res. 113, A07208 (2008)

    Article  ADS  Google Scholar 

  20. M. Goldman, D. Newman, R. Ergun, Nonlin. Process. Geophys. 10, 37 (2003)

    Article  ADS  Google Scholar 

  21. A. Abdikian, Contrib. Plasma Phys. 59, 20 (2019)

    Article  ADS  Google Scholar 

  22. F. Chen, Introduction to plasma physics and controlled fusion (Plenum Press, New York, 1984)

    Book  Google Scholar 

  23. I.B. Bernstein, J.M. Greene, M.D. Kruskal, Phys. Rev. 108, 546 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Gurevich, Sov. Phys. JETP 26, 575 (1968)

    ADS  Google Scholar 

  25. H. Schamel, J. Plasma Phys. 9, 377 (1973)

    Article  ADS  Google Scholar 

  26. N.S. Erokhin, N.N. Zolnikova, I.A. Mikhailovskaya, Fiz. Plazmy. 137 (1996)

  27. A. Misra, Appl. Math. Comput. 256, 368 (2015)

    MathSciNet  Google Scholar 

  28. S. Mayout, K. Bentabet, M. Tribeche, Contrib. Plasma Phys. 56, 99 (2016)

    Article  ADS  Google Scholar 

  29. K. Singh, N. Kaur, P. Sethi, N. Saini, in: AIP Conf. Proc., AIP Publishing, pp. 020014 (2018)

  30. S.K. El-Labany, W.F. El-Taibany, A. Atteya, Phys. Lett. A 382, 412 (2018). https://doi.org/10.1016/j.physleta.2017.12.026

    Article  ADS  MathSciNet  Google Scholar 

  31. R. Cairns, A. Mamum, R. Bingham, R. Boström, R. Dendy, C. Nairn, P. Shukla, Geophys. Res. Lett. 22, 2709 (1995)

    Article  ADS  Google Scholar 

  32. D. Bara, M. Djebli, D. Bennaceur-Doumaz, Laser Part. Beams 32, 391 (2014)

    Article  ADS  Google Scholar 

  33. K. Annou, D. Bara, D. Bennaceur-Doumaz, J. Plasma Phys. 81, 1 (2015)

    Article  Google Scholar 

  34. S.K. El-Labany, W.F. El-Taibany, N.A. Zedan, Phys. Plasmas 24, 112118 (2017)

    Article  ADS  Google Scholar 

  35. J.E. Ahlquist, J. Atmos. Sci. 39, (1982)

  36. S.W. McIntosh, W.J. Cramer, M.P. Marcano, R.J. Leamon, NatAs 1, 0086 (2017)

    Google Scholar 

  37. Y.Q. Lou, Astro. p.J., 540, 1102 (2000). https://doi.org/10.1086/309387

  38. T.V. Zaqarashvili, M. Carbonell, R. Oliver, J.L. Ballester, J. L, Astro. p.J. 709, 749 (2010). https://doi.org/10.1088/0004-637X/709/2/749

  39. M. Dikpati, P.S. Cally, S.W. McIntosh, E. Heifetz, Nature Rep. 7, 14750 (2017)

    Google Scholar 

  40. W. Lyra, A. Johansen, H. Klahr, N. Piskunov, Astron. Astrophys. 493, 3 (2009). https://doi.org/10.1051/0004-6361:200810797

    Article  Google Scholar 

  41. H. Meheut, F. Casse, P. Varniere, M. Tagger, Astron. Astrophys. 516, 31 (2010). https://doi.org/10.1051/0004-6361/201014000

    Article  ADS  Google Scholar 

  42. T.V. Zaqarashvili et al., Space Sci Rev. 217, 15 (2021). https://doi.org/10.1007/s11214-021-00790-2

    Article  ADS  Google Scholar 

  43. T.V. Zaqarashvili, Astroph. J. 856, 32 (2018). https://doi.org/10.3847/1538-4357/aab26f

    Article  ADS  Google Scholar 

  44. M. de Val-Borro, P. Artymowicz, G. D’Angelo, A. Peplinski, Astron. Astrophys. 471, 3 (2007). https://doi.org/10.1051/0004-6361:20077169

    Article  Google Scholar 

  45. G. Lesur, J.C.B. Papaloizou, Astron. Astrophys. 498, 1 (2009). https://doi.org/10.1051/0004-6361/200811577

    Article  ADS  Google Scholar 

  46. Shimin Guo, Liquan Mei, Phys. Plasmas 21, 082303 (2014)

    Article  ADS  Google Scholar 

  47. R. Sabry, W.M. Moslem, P.K. Shukla, Plasma Phys. Control. Fusion 54, 035010 (2012)

    Article  ADS  Google Scholar 

  48. M.E. Yahia, R.E. Tolba, W.M. Moslem, Adv. Res. 67, 1412–1424 (2021)

    Article  ADS  Google Scholar 

  49. R.E. Tolba, Eur. Phys. J. Plus 136, 138 (2021). https://doi.org/10.1140/epjp/s13360-020-01028-w

    Article  Google Scholar 

  50. A.P. Misra, P.K. Shukla, EPL. 100, 55001 (2012). https://doi.org/10.1209/0295-5075/100/55001

    Article  ADS  Google Scholar 

  51. R. Sabry, W.M. Moslem, P.K. Shukla, Phys. Revi. E. 86, 036408 (2012)

    Article  ADS  Google Scholar 

  52. S.K. El-Labany, W.F. El-Taibany, N.A. El-Bedwehy, N.A. Zedan, Plasma Phys. Rep. 43, 756 (2017). https://doi.org/10.1134/S1063780X17070042

    Article  ADS  Google Scholar 

  53. S.K. El-Labany, W.F. El-Taibany, A. Atteya, Phys. Lett. A. 382, 412 (2018). https://doi.org/10.1016/j.physleta.2017.12.026

    Article  ADS  MathSciNet  Google Scholar 

  54. I. Mann, T. Gunnarsdottir, I. Häggström, S. Eren, A. Tjulin, M. Myrvang, M. Rietveld, P. Dalin, D. Jozwicki, H. Trollvik, Contrib. Plasma Phys. 59, e20190000 (2019). https://doi.org/10.1002/ctpp.201900005

    Article  Google Scholar 

  55. Md. Abdus Salam, M.A. Akbar, M.Z. Ali, M. M. Haider, Results Phys. 26, 104376 (2021). https://doi.org/10.1016/j.rinp.2021.104376

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Tolba.

Appendix

Appendix

$$\begin{aligned} h_{1}&= \frac{3k^{2}\left( -R_{1}+1\right) }{5k^{2}\sigma -3\omega ^{2}},h_{2}=\frac{3k\omega \left( -R_{1}+1\right) }{5k^{2}\sigma -3\omega ^{2} },h_{3}=\frac{1}{16}(16b-189\Gamma +105b\Gamma -16),\\ h_{4}&= 1-\beta _{e},s_{1}=16\delta \left( \beta _{e}-1\right) -16k^{2}+(16(b-1)+21(5b-9)\Gamma )\mu ,\\ h_{5}&= \frac{i}{5k^{2}\sigma -3\omega ^{2}}(k(3R_{1}-3-3h_{2}V_{g}+5h_{1} \sigma )+3\omega (h_{2}-h_{1}V_{g}),\\ h_{6}&= \frac{i}{5k^{2}\sigma -3\omega ^{2}}(3\omega (R_{1}-1)+5h_{1}\sigma (-kV_{g}+\omega )+h_{2}(5k\sigma -3V_{g}\omega ),\\ s_{01}&= 8+16b+135\Gamma ,s_{2}=\frac{s_{01}}{8},s_{3} =1-b+\frac{189\Gamma }{16}-\frac{105b\Gamma }{16},h_{7}=\frac{-h_{71} }{h_{70}}, \end{aligned}$$
$$\begin{aligned} h_{71}&=k(9k(8\delta -8R_{1}\delta +4h_{3}R_{1}(4k^{2}+\delta -\beta _{e}\delta )+4h_{3}^{2}R_{1}\mu +s_{01}\mu (R_{1}-1)+8h_{2}^{2}(4k^{2}\\ &\quad +\delta -\beta _{e}\delta +h_{3}\mu ))-40h_{1}^{2}k(4k^{2}+\delta -\beta _{e}\delta +h_{3}\mu )\sigma +144h_{1}h_{2}(4k^{2}+\delta -\beta _{e}\delta +h_{3}\mu )\omega ), \end{aligned}$$
$$\begin{aligned} h_{70}=48(k^{2}(3-3R_{1}+5(4k^{2}+\delta -\beta _{e}\delta +h_{3}\mu )\sigma )-3(4k^{2}+\delta -\beta _{e}\delta +h_{3}\mu )\omega ^{2}). \end{aligned}$$
$$\begin{aligned} h_{8}&=\frac{h_{81}}{h_{70}},h_{81}=k(-48h_{1}h_{2}k(3-3R_{1} +5(4k^{2}+\delta -\beta _{e}\delta +h_{3}\mu )\sigma )-9(8\delta -8R_{1}\delta \\&\quad+4h_{3}R_{1}(4k^{2}+\delta -\beta _{e}\delta )+4h_{3}^{2}R_{1}\mu +s_{01} \mu (R_{1}-1)+8h_{2}^{2}(4k^{2}+\delta -\beta _{e}\delta +h_{3}\mu ))\omega \\&\quad+40h_{1}^{2}(4k^{2}+\delta -\beta _{e}\delta +h_{3}\mu )\sigma \omega ),\\ h_{9}&=\frac{-h_{91}}{h_{70}},h_{91}=k^{2}(36h_{3}(2h_{2} ^{2}+h_{3}R_{1})+9s_{01}(R_{1}-1)-5(8h_{1}^{2}h_{3}+12k^{2}s_{01}+3(8h_{3}\\&\quad+s_{01}-s_{01}\beta _{e})\delta )\sigma )+144h_{1}h_{2}h_{3}k\omega +9(4k^{2}s_{01}+(8h_{3}+s_{01}-s_{01}\beta _{e})\delta )\omega ^{2},\\ h_{10}&=\frac{h_{101}}{h_{70}},h_{101}=k^{2}(72-36R_{1} (2+h_{3}(\beta _{e}-1))-72h_{2}^{2}(\beta _{e}-1)+5(96k^{2}+8h_{1}^{2}(\beta _{e}-1)+3\\& \quad \times 3(8h_{3}+s_{01}-s_{01}\beta _{e})\mu )\sigma )-144h_{1}h_{2}k(\beta _{e}-1)\omega -9(32k^{2}+(8h_{3}+s_{01}-s_{01}\beta _{e})\mu )\omega ^{2},\\ h_{11}&=\frac{h_{111}}{h_{70}},h_{111}=k^{2}(72h_{2}^{2} +36h_{3}R_{1}-5(8h_{1}^{2}+24\delta -3\mu s_{01})\sigma +144h_{1}h_{2}k\omega \\&\quad+9(8\delta -s_{01}\mu )\omega ^{2}), \end{aligned}$$
$$\begin{aligned} h_{12}&=\frac{h_{121}}{h_{120}},h_{120}=6(3R_{1}-3+(\delta (\beta _{e}-1)-s_{3}\mu )(3V_{g}^{2}-5\sigma )), \\ h_{121}&=18(R_{1}-1)(\delta -s_{2}\mu )+(\delta (\beta _{e}-1)-s_{3}\mu )(9h_{3}R_{1}+18h_{2}(h_{2}+2h_{1}V_{g})-10h_{1}^{2}\sigma ), \end{aligned}$$
$$\begin{aligned} h_{13}&=\frac{-h_{131}}{h_{120}},h_{131}=18V_{g}\delta +9(4h_{1}h_{2}(R_{1}-1)+V_{g}(R_{1}(h_{3}-2-h_{3}\beta _{e})\delta +(2(R_{1}-1)s_{2}\\&\quad+h_{3}R_{1}s_{3})\mu +2h_{2}^{2}(\delta -\beta _{e}\delta +s_{3}\mu )))+10h_{1}(h_{1}V_{g}-6h_{2})((\beta _{e}-1)\delta -s_{3}\mu )\sigma , \end{aligned}$$
$$\begin{aligned} h_{14}&=\frac{h_{141}}{h_{120}},h_{141}=9s_{3}(h_{3}R_{1} +2h_{2}(h_{2}+2h_{1}V_{g})-2V_{g}^{2}\delta )+6s_{2}(3R_{1}-3+(\beta _{e}-1)\delta \\&\qquad(3V_{g}^{2}-5\sigma ))-10s_{3}(h_{1}^{2}-3\delta )\sigma , \\ h_{15}&=\frac{h_{151}}{h_{120}},h_{151}=6(3R_{1}-3-(s_{2} +s_{3}-s_{2}\beta _{e})\mu (3V_{g}^{2}-5\sigma ))+(\beta _{e}-1)(9h_{3}R_{1}\\&\quad+18h_{2}(h_{2}+2h_{1}V_{g})-10h_{1}^{2}\sigma ), \end{aligned}$$
$$\begin{aligned} h_{16}&=\frac{h_{161}}{h_{120}},h_{161}=18h_{2}^{2}+9R_{1}h_{3} +36h_{1}h_{2}V_{g}-10h_{1}^{2}\sigma +6(\delta -s_{2}\mu )(-3V_{g}^{2}+5\sigma ).\\ s_{4}&=35\Gamma +3b(8+81\Gamma ),s_{5}=16-16b+189\Gamma -105\Gamma .\\ P_{1}&=\frac{k(5ih_{5}\sigma -3ih_{6}V_{g}-5k\sigma )+3i(h_{6}-h_{5}V_{g} )\omega +3\omega ^{2}}{3(h_{2}k+h_{1}\omega )}, \end{aligned}$$
$$\begin{aligned} P_{2}&=((3\omega ^{2}-5\sigma k^{2})(k^{2}(54(8h_{11}h_{3}-h_{3}^{2} -4h_{9})R_{1}+5(32h_{1}^{3}-48h_{1}^{2}h_{7}+9(16h_{11}\\ &\quad +15(18h_{11}-7)\Gamma +b(32h_{11}-72-729\Gamma ))\mu )\sigma )+432h_{1} h_{8}k\omega -27(16h_{11}+15\Gamma (18h_{11}-7)\\&\qquad b(h_{11}(32+42\Gamma )-9(8+81\Gamma )))\mu \omega ^{2}+432kh_{2}(h_{8} k+h_{7}\omega )+6(k^{2}(72h_{13}h_{2}+36h_{14}R_{1}\\&\quad-5(8h_{1}h_{12}+12(1+h_{11}+2h_{16}+3\beta _{e})\delta -3h_{16} (8+16b+135\Gamma +21b\Gamma )\mu )\sigma )+72(h_{1}h_{13}\\&\quad+h_{2}h_{12})\omega k+92h_{11}+2h_{16}+3\beta _{e})\delta -h_{16} (8+135\Gamma ))\mu )\omega ^{2})))(432(h_{2}k+h_{1}\omega )(5k^{2}\sigma -3\omega ^{2})))^{-1}), \end{aligned}$$
$$\begin{aligned} P_{3}=\frac{3\omega ^{4}+5k^{2}\sigma \Omega _{c}^{2}+\omega ^{2}(3R_{1} -3+5h_{1}\sigma -5k^{2}\sigma -3\Omega _{c}^{2}}{3(h_{2}k+h_{1}\omega )(\omega ^{2}-\Omega _{c}^{2})}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolba, R.E., Abdikian, A., Alharthi, N.S. et al. Dust-acoustic Rossby waves in magnetized plasma. Eur. Phys. J. Plus 138, 541 (2023). https://doi.org/10.1140/epjp/s13360-023-04013-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04013-1

Navigation