Skip to main content
Log in

Squeezed coherent states for a free particle with time-varying mass

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We obtain the squeezed coherent states (SCS) for a free particle with exponentially time-varying mass. We write these states in terms of the squeeze and displacement parameters on the time-independent Fock states. Thus, we find a condition on the displacement parameter such that the SCS can be considered semiclassical states. We show that it is possible to obtain the coherent states (CS) for a free particle with minimal uncertainty as long as the mass increases with the time. We analyze the transition probability of a system initially prepared in the time-independent Fock states to the free particle SCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. R.G. Littlejohn, The semiclassical evolution of wave packets. Phys. Rep. 138, 193 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Andrews, The evolution of free wave packets. Am. J. Phys. 76, 1102 (2008)

    Article  ADS  Google Scholar 

  3. S. Hacyan, The quantum sling and the Schrödinger cat. Found. Phys. Lett. 9, 225 (1996)

    Article  MathSciNet  Google Scholar 

  4. B.E.A. Saleh, M.C. Teich, Fundamentals of Fotonics (Wiley, New Jersey, 2007)

    Google Scholar 

  5. E. Schrödinger, Der stetige ubergang von der mikro-zur makromechanik. Naturwissenschaften 14(28), 664 (1926)

    Article  ADS  MATH  Google Scholar 

  6. R.J. Glauber, Coherent and incoherent states of the radiation field Phys. Rev. Lett. 10, 84 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. J.R. Klauder, B.S. Skagerstam, Coherent States, Applications in Physics and Mathematical Physics (World Scientific, Singapore, 1985)

    Book  MATH  Google Scholar 

  8. J.R. Klauder, E.C. Sudarshan, Fundamentals of Quantum Optics (Benjamin, New York, 1968)

    Google Scholar 

  9. H. A. Bachor, T. C. Ralph, A Guide to Experiments in Quantum Optics (Wiley-Vch, 2004)

  10. R. Schnabel, Squeezed states of light and their applications in laser interferometers. Phys. Rept. 684, 1 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. S. Dey, An introductory review on resource theories of generalized nonclassical light. J. Phys: Confer. Ser. 2038, 012008 (2021)

    Google Scholar 

  12. K. Zelaya, S. Dey, V. Hussin, Generalized squeezed states. Phys. Lett. A 382, 3369 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. V.V. Dodonov, V.I. Man’ko, Theory of Nonclassical States of Light (Taylor & Francis Group, London, 2003)

  14. J.B. Geloun, J. Hnybida, J.R. Klauder, Coherent states for continuous spectrum operators with non-normalizable fiducial states. J. Phys. A: Math. Theor. 45, 085301 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. M. Andrews, Invariant operators for quadratic Hamiltonians Am. J. Phys. 67, 336 (1999)

    ADS  Google Scholar 

  16. V.G. Bagrov, D.M. Gitman, A.S. Pereira, Coherent and semiclassical states of a free particle. Phys.-Usp. 57, 891 (2014)

    Article  ADS  Google Scholar 

  17. J. Guerrero, F.F. López-Ruiz, V. Aldaya, F. Cossío, Harmonic states for the free particle. J. Phys. A: Math. Theor. 44, 445307 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Maamache, A. Khatir, H. Lakehal, J.R. Choi, Analyzing generalized coherent states for a free particle. Sci. Rep. 6, 30538 (2016)

    Article  ADS  Google Scholar 

  19. O.V. Man’ko, Coherent states of a free particle with varying mass in the probability representation of quantum mechanics. J. Rus. Las. Res. 43, 90 (2022)

    Article  Google Scholar 

  20. A.S. Pereira, A.S. Lemos, Time-dependent coherent squeezed states in a nonunitary approach. Phys. Lett. A 405, 127428 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. V.G. Bagrov, D.M. Gitman, A.S. Pereira, Coherent states of systems with quadratic Hamiltonians. Braz. J. Phys. 45, 369 (2015)

    Article  ADS  Google Scholar 

  22. P. Caldirola, Forze non conservative nella meccanica quantistica. Nuovo Cimento 18, 393 (1941)

    Article  MATH  Google Scholar 

  23. E. Kanai, On the quantization of the dissipative systems. Prog. Theor. Phys. 3, 440 (1948)

    Article  ADS  Google Scholar 

  24. H. R. Lewis Jr., W. B. Riesenfeld, An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys. 10, 1458 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. V.V. Dodonov, I.A. Malkin, V.I. Man’ko, Integrals of the motion, green functions, and coherent states of dynamical systems. Int. J. Theor. Phys. 14, 37 (1975)

    Article  MathSciNet  Google Scholar 

  26. A.S. Pereira, A.S. Lemos, F.A. Brito, Generalized para-Bose states. Eur. Phys. J. Plus 137, 957 (2022)

    Article  Google Scholar 

  27. A.M. Perelomov, Generalized Coherent States and their Applications (Springer, 1986)

  28. K. Zelaya, V. Hussin, O. Rosas-Ortiz, Constructing squeezed states of light with associated Hermite polynomials. Eur. Phys. J. Plus 136, 534 (2021)

    Article  Google Scholar 

  29. A. Erdélyi, Bateman Manuscript Project, Higher Transcendental Functions, vol. 2 (McGraw-Hill, New York, 1953)

    Google Scholar 

  30. J.P. Gazeau, Coherent States in Quantum Physics (Wiley-VCH, Weinheim, 2009)

    Book  Google Scholar 

  31. H.P. Robertson, A general formulation of the uncertainty principle and its classical interpretation. Phys. Rev. 35, 667A (1930)

    Google Scholar 

  32. V.V. Dodonov, E.V. Kurmyshev, V.I. Man’ko, Generalized uncertainty relation and correlated coherent states. Phys. Lett. 79(A), 150 (1980)

    Article  MathSciNet  Google Scholar 

  33. A.M. Awobode, Dynamical fluctuations of the rest. Found. Phys. Lett. 3, 167 (1990)

    Article  Google Scholar 

  34. M.E.H. Ismail, P. Simeonov, Complex Hermite polynomials: their combinatorics and integral operators. Proc. Am. Math. Soc. 143, 1397 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. S.J.L. van Eijndhoven, J.L.H. Meyers, New orthogonality relations for the Hermite polynomials and related Hilbert spaces. J. Math. Anal. Appl. 146, 89 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank CNPq, CAPES and CNPq/PRONEX/FAPESQ-PB (Grant No. 165/2018), for partial financial support. ASL and FAB acknowledges support from CNPq (Grant Nos. 150601/2021-2, 312104/2018-9). ASL acknowledges support from CAPES (Grant No. 88887.800922/2023-00). ASP thanks the support of the Instituto Federal do Pará.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Pereira.

Appendices

Appendix A: Determination of \(\Phi\)–function

We aim to get the \(\Phi\)–function present in the states (18). For this, we must substitute the states \(\left| \xi ,\zeta \right\rangle\) in the Schrödinger equation, and multiply it by \(\left\langle \zeta ,\xi \right|\), to have the following differential equation for \(\Phi\),

$$\begin{aligned} \frac{{\dot{\Phi }}}{\Phi }=\frac{1}{i\hbar }\frac{\left\langle \xi ,\zeta \left| {\hat{H}}\right| \xi ,\zeta \right\rangle }{\left\langle \xi ,\zeta |\xi ,\zeta \right\rangle }+{\dot{\xi }}\frac{\left\langle \xi ,\zeta \left| {\hat{a}}^{\dagger }\right| \xi ,\zeta \right\rangle }{\left\langle \xi ,\zeta |\xi ,\zeta \right\rangle }+\frac{1}{2}{\dot{\zeta }}\frac{\left\langle \xi ,\zeta \left| {\hat{a}}^{\dagger 2}\right| \xi ,\zeta \right\rangle }{\left\langle \xi ,\zeta |\xi ,\zeta \right\rangle }. \end{aligned}$$
(A1)

The derivative of parameters \(\zeta\) and \(\xi\) is found by assuming the definitions (13) and (14) together with Eqs. (11), as follows

$$\begin{aligned} {\dot{\zeta }}=\frac{d}{dt}\left( \frac{g}{f}\right) =-\frac{i\hbar }{2l^{2}m}\left( 1+\zeta \right) ^{2},\quad {\dot{\xi }}=\frac{d}{dt}\left( \frac{\varphi }{f}\right) =-\frac{i\hbar }{2l^{2}m}\left( 1+\zeta \right) \xi . \end{aligned}$$
(A2)

The mean value of the operators \({\hat{H}}\left( t\right)\), \({\hat{a}}^{\dagger }\) and \({\hat{a}}^{\dagger 2}\) can be easily obtained by considering these operators in terms of the integrals of motion (6), in the form

$$\begin{aligned} {\hat{a}}^{\dagger }&=\frac{{\hat{B}}^{\dagger }-\zeta ^{*}{\hat{B}}}{1-\left| \zeta \right| ^{2}}+\frac{\zeta ^{*}\xi -\xi ^{*}}{1-\left| \zeta \right| ^{2}},\quad {\hat{B}}\equiv \frac{1}{f}{\hat{A}},\nonumber \\ {\hat{a}}^{\dagger 2}&=\frac{{\hat{B}}^{\dagger 2}+\zeta ^{*2}{\hat{B}}^{2}-2\zeta ^{*}{\hat{B}}^{\dagger }{\hat{B}}+2\left( \zeta ^{*}\xi -\xi ^{*}\right) {\hat{B}}^{\dagger }-2\left( \zeta ^{*}\xi -\xi ^{*}\right) \zeta ^{*}{\hat{B}}}{\left( 1-\left| \zeta \right| ^{2}\right) ^{2}}+\frac{\left( \zeta ^{*}\xi -\xi ^{*}\right) ^{2}}{\left( 1-\left| \zeta \right| ^{2}\right) ^{2}}-\frac{\zeta ^{*}}{1-\left| \zeta \right| ^{2}},\nonumber \\ {\hat{H}}\left( t\right)&=\frac{\hbar ^{2}}{4l^{2}m}\frac{2\left[ 1+\left| \zeta \right| ^{2}+2{\text {Re}}\left( \zeta \right) \right] {\hat{B}}^{\dagger }{\hat{B}}-\left( 1+\zeta ^{*}\right) ^{2}{\hat{B}}^{2}-\left( 1+\zeta \right) ^{2}{\hat{B}}^{\dagger 2}}{\left( 1-\left| \zeta \right| ^{2}\right) ^{2}}\nonumber \\&\quad +\,\frac{\hbar ^{2}}{4l^{2}m}\frac{4i{\text {Im}}\left( \zeta \xi ^{*}-\xi \right) \left[ \left( 1+\zeta \right) {\hat{B}}^{\dagger }-\left( 1+\zeta ^{*}\right) {\hat{B}}\right] }{\left( 1-\left| \zeta \right| ^{2}\right) ^{2}}+\frac{\hbar ^{2}}{2l^{2}m}\frac{\left| \zeta \xi ^{*}-\xi \right| ^{2}}{\left( 1-\left| \zeta \right| ^{2}\right) ^{2}}+\frac{\hbar ^{2}}{4l^{2}m}\nonumber \\&\quad +\,\frac{\hbar ^{2}}{2l^{2}m}\frac{{\text {Re}}\left[ \left( \zeta +\left| \zeta \right| ^{2}\right) \left( 1-\left| \zeta \right| ^{2}\right) -\left( \zeta \xi ^{*}-\xi \right) ^{2}\right] }{\left( 1-\left| \zeta \right| ^{2}\right) ^{2}}. \end{aligned}$$
(A3)

Substituting the relations (A3) together with the condition (17), we can rewrite Eq. (A1) as follows

$$\begin{aligned} \frac{{\dot{\Phi }}}{\Phi }=\frac{i\hbar }{4l^{2}m}\left( \xi ^{2}-\zeta -1\right) =\frac{1}{2}\frac{d}{dt}\left( \frac{\zeta ^{*}\xi ^{2}}{1-\left| \zeta \right| ^{2}}-\frac{i\hbar }{2l^{2}}\int _{0}^{t}\frac{\zeta +1}{m}d\tau \right) . \end{aligned}$$
(A4)

Therefore, the general solution of (A1) is given by

$$\begin{aligned} \Phi =C\exp \left( \frac{1}{2}\frac{\zeta ^{*}\xi ^{2}}{1-\left| \zeta \right| ^{2}}-\frac{i\hbar }{4l^{2}}\int _{0}^{t}\frac{\zeta +1}{m}d\tau \right) , \end{aligned}$$
(A5)

where C is an arbitrary real constant that will be fixed by imposing the normalization condition on the state \(\left| \xi ,\zeta \right\rangle\).

Appendix B: Normalization condition

We will determine the constant C by imposing the normalization of the states \(\left| \xi ,\zeta \right\rangle\). First, consider the generating function of the Hermite polynomials, see the formula \(\left( 10.13.19\right)\) in [29],

$$\begin{aligned}&\exp \left( 2yz-z^{2}\right) = {\displaystyle \sum \limits _{n=0}^{\infty }} \frac{H_{n}\left( y\right) }{n!}z^{n},\nonumber \\&z=-\sqrt{\frac{\zeta }{2}}{\hat{a}}^{\dagger },\quad y=\frac{\xi }{\sqrt{2\zeta }}. \end{aligned}$$
(B1)

Thus, we can write (18), in the form

$$\begin{aligned} \left| \xi ,\zeta \right\rangle =C\exp \left( \frac{1}{2}\frac{\zeta ^{*}\xi ^{2}}{1-\left| \zeta \right| ^{2}}-\frac{i\hbar }{4l^{2}}\int _{0}^{t}\frac{\zeta +1}{m}d\tau \right) {\displaystyle \sum \limits _{n=0}^{\infty }} \frac{\left( -1\right) ^{n}}{\sqrt{n!}}\left( \frac{\zeta }{2}\right) ^{\frac{n}{2}}H_{n}\left( \frac{\xi }{\sqrt{2\zeta }}\right) \left| n\right\rangle . \end{aligned}$$
(B2)

In what follows, let us calculate \(\left\langle \zeta ,\xi |\xi ,\zeta \right\rangle\), which will be given by

$$\begin{aligned} \left\langle \zeta ,\xi |\xi ,\zeta \right\rangle =\left| C\right| ^{2}\exp \left[ \frac{{\text {Re}}\left( \zeta ^{*}\xi ^{2}\right) }{1-\left| \zeta \right| ^{2}}+\frac{\hbar }{2l^{2}}\int _{0}^{t}\frac{{\text {Im}}\left( \zeta \right) }{m}d\tau \right] {\displaystyle \sum \limits _{n=0}^{\infty }} \frac{\left| \zeta \right| ^{n}}{2^{n}n!}H_{n}\left( \frac{\xi }{\sqrt{2\zeta }}\right) H_{n}\left( \frac{\xi ^{*}}{\sqrt{2\zeta ^{*}}}\right) . \end{aligned}$$
(B3)

From the formula (10.13.22) in [29],

$$\begin{aligned}&{\displaystyle \sum \limits _{n=0}^{\infty }} H_{n}\left( x\right) H_{n}\left( y\right) \frac{z^{n}}{2^{n}n!}=\frac{1}{\sqrt{1-z^{2}}}\exp \left[ \frac{2xyz-\left( x^{2}+y^{2}\right) z^{2}}{1-z^{2}}\right] ,\nonumber \\&x=\frac{\xi }{\sqrt{2\zeta }},\quad y=\frac{\xi ^{*}}{\sqrt{2\zeta ^{*}}},\quad z=\left| \zeta \right| , \end{aligned}$$
(B4)

and imposing the normalization of the states \(\left| \xi ,\zeta \right\rangle\), i.e., \(\left\langle \zeta ,\xi |\xi ,\zeta \right\rangle =1\), we have C in the form

$$\begin{aligned} C=\left( 1-\left| \zeta _{0}\right| ^{2}\right) ^{1/4}\exp \left( -\frac{1}{2}\frac{\left| \xi \right| ^{2}}{1-\left| \zeta \right| ^{2}}\right) . \end{aligned}$$
(B5)

Appendix C: Completeness relation

Let us get the completeness relation for the states \(\left| \xi ,\zeta \right\rangle\). As we can see from Eqs. (13) and (14), the displacement and squeeze parameters are related to each other. Thus, we will obtain the completeness relation for the SCS by sweeping the entire complex plane of the constant \(\varphi =\varphi _{0}\). Therefore, we must have

$$\begin{aligned}&\int \left| \varphi ,\zeta \right\rangle \left\langle \zeta ,\varphi \right| d^{2}\varphi =1,\nonumber \\&d^{2}\varphi =\eta \left( u_{1},u_{2}\right) du_{1}du_{2},\quad u_{1}={\text {Re}}\left( \varphi \right) ,\quad u_{2}={\text {Im}}\left( \varphi \right) . \end{aligned}$$
(C1)

where \(\eta \left( u_{1},u_{2}\right)\) is a weight function, which will be fixed in order to ensure the completeness relation (C1).

Consider the real functions \(z_{1}\) and \(z_{2}\), in the following form

$$\begin{aligned} z_{1}=\frac{\cos \left( \theta _{f}+\frac{1}{2}\theta _{\zeta }\right) u_{1}+\sin \left( \theta _{f}+\frac{1}{2}\theta _{\zeta }\right) u_{2}}{\sqrt{2\left| \zeta \right| }\left| f\right| },\quad z_{2}=\frac{\cos \left( \theta _{f}+\frac{1}{2}\theta _{\zeta }\right) u_{2}-\sin \left( \theta _{f}+\frac{1}{2}\theta _{\zeta }\right) u_{1}}{\sqrt{2\left| \zeta \right| }\left| f\right| }, \end{aligned}$$
(C2)

where we made the substitutions \(\zeta =\left| \zeta \right| e^{i\theta _{\zeta }}\) and \(f=\left| f\right| e^{i\theta _{f}}\). From here, we can write

$$\begin{aligned} \left( \begin{array}{c} z_{1}\\ z_{2} \end{array}\right) =Z\left( \begin{array}{c} u_{1}\\ u_{2} \end{array}\right) ,\quad Z=\frac{1}{\sqrt{2\left| \zeta \right| }\left| f\right| }\left( \begin{array}{ll} \cos \left( \theta _{f}+\frac{1}{2}\theta _{\zeta }\right) &{} \sin \left( \theta _{f}+\frac{1}{2}\theta _{\zeta }\right) \\ -\sin \left( \theta _{f}+\frac{1}{2}\theta _{\zeta }\right) &{} \cos \left( \theta _{f}+\frac{1}{2}\theta _{\zeta }\right) \end{array}\right) . \end{aligned}$$
(C3)

Thus, the element of integration \(d^{2}\varphi\) in the new variables \(z_{1}\) and \(z_{2}\) takes the form

$$\begin{aligned} d^{2}\varphi =\eta \left( z_{1},z_{2}\right) \det \left( Z^{-1}\right) dz_{1}dz_{2}=2\left| f\right| ^{2}\left| \zeta \right| \eta \left( z_{1},z_{2}\right) dz_{1}dz_{2}. \end{aligned}$$
(C4)

Therefore, we can rewrite (C1), as follows

$$\begin{aligned}&\int \left| \varphi ,\zeta \right\rangle \left\langle \zeta ,\varphi \right| d^{2}\varphi =2\left| f\right| ^{2}\left| \zeta \right| \sqrt{1-\left| \zeta \right| ^{2}} {\displaystyle \sum \limits _{n,n^{\prime }=0}^{\infty }} \frac{\left( -1\right) ^{n+n^{\prime }}\zeta ^{\frac{n}{2}}\left( \zeta ^{*}\right) ^{\frac{n^{\prime }}{2}}}{\sqrt{2^{n+n^{\prime }}n!n^{\prime }!}}\left| n\right\rangle \left\langle n^{\prime }\right| \times \nonumber \\&\int \int \exp \left( -\frac{2\left| \zeta \right| }{1+\left| \zeta \right| }z_{1}^{2}-\frac{2\left| \zeta \right| }{1-\left| \zeta \right| }z_{2}^{2}\right) H_{n}\left( z_{1}+iz_{2}\right) H_{n^{\prime }}\left( z_{1}-iz_{2}\right) \eta \left( z_{1},z_{2}\right) dz_{1}dz_{2}. \end{aligned}$$
(C5)

Now \(\left( i\right)\) making the following identification

$$\begin{aligned} a=\frac{2\left| \zeta \right| }{1+\left| \zeta \right| },\quad b=\frac{2\left| \zeta \right| }{1-\left| \zeta \right| }, \end{aligned}$$
(C6)

(ii) considering the orthogonality of the Hermite polynomials [34, 35],

$$\begin{aligned} \int \int dxdyH_{n}\left( x+iy\right) H_{n^{\prime }}\left( x-iy\right) e^{-ax^{2}-by^{2}}=\frac{\pi }{\sqrt{ab}}2^{n}n!\left( \frac{a+b}{ab}\right) ^{n}\delta _{n,n^{\prime }}, \end{aligned}$$
(C7)

and \(\left( iii\right)\) choosing the weight function \(\eta \left( z_{1},z_{2}\right) =\left( \pi \mu \right) ^{-1}\), we will have

$$\begin{aligned} \int \left| \varphi ,\zeta \right\rangle \left\langle \zeta ,\varphi \right| d^{2}\varphi = {\displaystyle \sum \limits _{n=0}^{\infty }} \left| n\right\rangle \left\langle n\right| =1. \end{aligned}$$
(C8)

Thus, we show that the resolution of the identity for the SCS of a free particle is satisfied in the complex plane of the constant \(\varphi\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, A.S., Lemos, A.S. & Brito, F.A. Squeezed coherent states for a free particle with time-varying mass. Eur. Phys. J. Plus 138, 363 (2023). https://doi.org/10.1140/epjp/s13360-023-03974-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03974-7

Navigation