Skip to main content
Log in

Geodesics in geometrothermodynamics (GTD) type II geometry of 4D asymptotically anti-de-Sitter black holes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we study the thermodynamic geodesics of 4D asymptotically anti-de Sitter black holes in the context of the geometrothermodynamics (GTD) type II metric. We construct GTD type II metrics for four different black holes: 4D Kerr–Newman AdS (KN-AdS), Kerr-AdS (K-AdS), Reissner–Nordstrom AdS (RN-AdS), and Dyonic AdS black holes in various ensembles. For K-AdS and RN-AdS black holes, we work in canonical as well as grand canonical ensembles. For KN-AdS and Dyonic AdS black holes, in addition to these two ensembles, we also consider a fixed charged ensemble. For each case, we solve the corresponding geodesic equations numerically and analyze their behavior near the spinodal curves. These spinodal curves, which separate the positive specific heat region from the negative specific heat region, can be treated as the boundary between two black hole phases in the thermodynamic parameter space. The points on the spinodal curve are the points in parameter space at which we reach Davies’ temperature. We find that the geodesics, in all the cases under consideration, are confined to a single phase and exhibit either turning behavior or incompleteness near the spinodal curve (Davies’ temperature). This is universally true for GTD type II geodesics in KN-AdS, K-AdS, RN-AdS, and Dyonic AdS black holes in different ensembles. From this, we conclude that the turning behavior or incompleteness of geodesics in GTD type II geometry can be used as an indicator of phase transitions in 4D asymptotically AdS black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability statement

No data associated in the manuscript.

References

  1. H. Janyszek, R. Mrugala, Phys. Rev. A 39, 6515–6523 (1989). https://doi.org/10.1103/PhysRevA.39.6515

    Article  ADS  MathSciNet  Google Scholar 

  2. J.E. Aman, N. Pidokrajt, Phys. Rev. D 73, 024017 (2006). https://doi.org/10.1103/PhysRevD.73.024017. arXiv:hep-th/0510139 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  3. J.Y. Shen, R.G. Cai, B. Wang, R.K. Su, Int. J. Mod. Phys. A 22, 11–27 (2007). https://doi.org/10.1142/S0217751X07034064. arXiv:gr-qc/0512035 [gr-qc]

    Article  ADS  Google Scholar 

  4. K. Brandner, K. Saito, Thermodynamic geometry of microscopic heat engines. Phys. Rev. Lett. 124, 040602 (2020)

    Article  ADS  Google Scholar 

  5. Z.M. Xu, B. Wu, W.L. Yang, Phys. Rev. D 101(2), 024018 (2020). https://doi.org/10.1103/PhysRevD.101.024018. arXiv:1910.12182 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  6. B. Mirza, H. Mohammadzadeh, Thermodynamic geometry of deformed bosons and fermions. J. Phys. A Math. Theor. 44, 475003 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. J.W. Gibbs, The collected works of J. Willard Gibbs (Yale Univ. Press, New Haven, 1948)

    MATH  Google Scholar 

  8. C. Carathéodory, Untersuchungen über die Grundlagen der Thermodynamik. Math. Ann. 67, 355–386 (1909). https://doi.org/10.1007/BF01450409

    Article  MathSciNet  Google Scholar 

  9. R. Hermann, Geometry, Physics, and Systems (M. Dekker, New York, 1973)

    MATH  Google Scholar 

  10. R. MrugaŁa, Geometrical formulation of equilibrium phenomenological thermodynamics. Reports Math Phys 14, 419 (1978)

    Article  ADS  Google Scholar 

  11. R. Mrugała, Submanifolds in the thermodynamic phase space. Reports Math Phys 21, 197 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. F. Weinhold, Metric geometry of equilibrium thermodynamics. V. Aspects of heterogeneous equilibrium. J. Chem. Phys. 63, 2479 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  13. F. Weinhold, Metric geometry of equilibrium thermodynamics. V. Aspects of heterogeneous equilibrium. J. Chem. Phys. 63, 2484 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  14. F. Weinhold, Metric geometry of equilibrium thermodynamics. V. Aspects of heterogeneous equilibrium. J. Chem. Phys. 63, 2488 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  15. F. Weinhold, Metric geometry of equilibrium thermodynamics. V. Aspects of heterogeneous equilibrium. J. Chem. Phys. 63, 2496 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  16. F. Weinhold, Metric geometry of equilibrium thermodynamics. V. Aspects of heterogeneous equilibrium. J. Chem. Phys. 65, 558 (1976)

    Article  ADS  Google Scholar 

  17. T. Feldman, B. Andersen, A. Qi, P. Salamon, Thermodynamic lengths and intrinsic time scales in molecular relaxation. Chem. Phys. 83, 5849 (1985)

    ADS  Google Scholar 

  18. R. Gilmore, Thermodynamic partial derivatives. J. Chem. Phys. 75, 5964 (1981)

    Article  ADS  Google Scholar 

  19. P. Salamon, B. Andersen, P.D. Gait, R.S. Berry, The significance of Weinhold’s length. J. Chem. Phys. 73, 1001 (1980)

    Article  ADS  Google Scholar 

  20. P. Salamon, J. Nulton, E. Ihrig, On the relation between entropy and energy relations of electrodynamic length. J. Chem. Phys. 80, 436 (1984)

    Article  ADS  Google Scholar 

  21. P. Salamon, J. Nulton, J.D. Berry, Length in statistical thermodynamics. J. Chem. Phys. 82, 2433 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  22. J. Nulton, P. Salamon, Geometry of the ideal gas. Phys. Rev. A 31, 2520 (1985)

    Article  ADS  Google Scholar 

  23. M. Santoro, Thermodynamic length in a two-dimensional thermodynamic state space. J. Chem. Phys. 121, 2932 (2004)

    Article  ADS  Google Scholar 

  24. M. Santoro, Weinhold length in an isentropic ideal and quasi-ideal gas. Chem. Phys. 310, 269 (2005)

    Article  Google Scholar 

  25. M. Santoro, Weinhold’s length in an isochoric thermodynamical system with constant heat capacity. Chem. Phys. 313, 331 (2005)

    Article  Google Scholar 

  26. M. Santoro, S. Preston, Curvature of the Weinhold metric for thermodynamical systems with 2 degrees of freedom (2005). arXiv:math-ph/0505010

  27. G. Ruppeiner, Thermodynamics: a Riemannian geometric model. Phys. Rev. A 20, 1608 (1979)

    Article  ADS  Google Scholar 

  28. J. Aman, I. Bengtsson, N. Pidokrajt, Geometry of black hole thermodynamics. Gen. Relat. Gravit. 35, 1733 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. H. Quevedo, Geometrothermodynamics. J. Math. Phys. 48, 013506 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. H. Quevedo, Geometrothermodynamics of black holes. Gen. Relat. Gravit. 40, 971 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. J.L. Alvarez, H. Quevedo, A. Sanchez, Unified geometric description of black hole thermodynamics. Phys. Rev. D 77, 084004 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  32. H. Quevedo, A. Sánchez, Geometrothermodynamics of asymptotically anti-de sitter black holes. J. High Energy Phys. 2008, 034 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Quevedo, A. Sánchez, Geometric description of BTZ black hole thermodynamics. Phys. Rev. D 79, 024012 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. H. Quevedo, A. Sánchez, Geometrothermodynamics of black holes in two dimensions. Phys. Rev. D 79, 087504 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  35. A. Vázquez, H. Quevedo, A. Sánchez, Thermodynamic systems as extremal hypersurfaces. J. Geom. Phys. 60, 1942 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. H. Quevedo, A. Sanchez, A. Vazquez, Relativisticlike structure of classical thermodynamics. ArXiv:0811.0222 [Math-Ph] (2014)

  37. C. Cafaro, O. Luongo, S. Mancini, H. Quevedo, Thermodynamic length, geometric efficiency and Legendre invariance. Physica A Stat. Mech. Appl. 590, 126740 (2022). https://doi.org/10.1016/j.physa.2021.126740. arXiv:2101.05523 [cond-mat.stat-mech]

    Article  MathSciNet  MATH  Google Scholar 

  38. G. Ruppeiner, Thermodynamic curvature measures interactions. Am. J. Phys. 78, 1170 (2010)

    Article  ADS  Google Scholar 

  39. H.-O. May, P. Mausbach, G. Ruppeiner, Thermodynamic curvature for attractive and repulsive intermolecular forces. Phys. Rev. E 88, 032123 (2013)

    Article  ADS  Google Scholar 

  40. B.P. Dolan, Intrinsic curvature of thermodynamic potentials for black holes with critical points. Phys. Rev. D 92(4), 044013 (2015). https://doi.org/10.1103/PhysRevD.92.044013. arXiv:1504.02951 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  41. S.W. Wei, Y.X. Liu, R.B. Mann, Ruppeiner geometry, phase transitions, and the microstructure of charged AdS black holes. Phys. Rev. D 100(12), 124033 (2019). https://doi.org/10.1103/PhysRevD.100.124033. arXiv:1909.03887 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  42. G. Ruppeiner, Thermodynamic curvature and phase transitions in Kerr–Newman black holes. Phys. Rev. D 78, 024016 (2008). https://doi.org/10.1103/PhysRevD.78.024016. arXiv:0802.1326 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  43. N.J. Gogoi, P. Phukon, Thermodynamic geometry of 5D \(R\)-charged black holes in extended thermodynamic space. Phys. Rev. D 103(12), 126008 (2021). https://doi.org/10.1103/physrevd.103.126008

    Article  ADS  MathSciNet  Google Scholar 

  44. M.M. Caldarelli, G. Cognola, D. Klemm, Thermodynamics of Kerr–Newman-AdS black holes and conformal field theories. Class. Quantum Gravity 17, 399–420 (2000). https://doi.org/10.1088/0264-9381/17/2/310

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Y.D. Tsai, X.N. Wu, Y. Yang, Phase structure of Kerr-AdS black hole. Phys. Rev. D 85, 044005 (2012). https://doi.org/10.1103/PhysRevD.85.044005. arXiv:1104.0502 [hep-th]

    Article  ADS  Google Scholar 

  46. A. Chamblin, R. Emparan, C.V. Johnson, R.C. Myers, Holography, thermodynamics and fluctuations of charged AdS black holes. Phys. Rev. D 60, 104026 (1999). https://doi.org/10.1103/PhysRevD.60.104026

    Article  ADS  MathSciNet  Google Scholar 

  47. S. Dutta, A. Jain, R. Soni, Dyonic black hole and holography. JHEP 12, 060 (2013). https://doi.org/10.1007/JHEP12(2013)060. arXiv:1310.1748 [hep-th]

    Article  ADS  Google Scholar 

  48. H. Liu, H. Lu, M. Luo, K.N. Shao, Thermodynamical metrics and black hole phase transitions. JHEP 12, 054 (2010). https://doi.org/10.1007/JHEP12(2010)054. arXiv:1008.4482 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. J.L. Zhang, R.G. Cai, H. Yu, Phase transition and thermodynamical geometry of Reissner–Nordström-AdS black holes in extended phase space. Phys. Rev. D 91(4), 044028 (2015). https://doi.org/10.1103/PhysRevD.91.044028. arXiv:1502.01428 [hep-th]

    Article  ADS  Google Scholar 

  50. O. Luongo, H. Quevedo, Gen. Rel. Grav. 46, 1649 (2014). https://doi.org/10.1007/s10714-013-1649-z. arXiv:1211.0626 [gr-qc]

    Article  ADS  Google Scholar 

  51. P. Kumar, S. Mahapatra, P. Phukon, T. Sarkar, Geodesics in information geometry: classical and quantum phase transitions. Phys. Rev. E 86, 051117 (2012)

    Article  ADS  Google Scholar 

  52. H. Quevedo, Geometrothermodynamics of black holes. Gen. Relat. Gravit. 40, 971–984 (2008). https://doi.org/10.1007/s10714-007-0586-0. arXiv:0704.3102 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. H. Quevedo, A. Sanchez, S. Taj, A. Vazquez, Phase transitions in geometrothermodynamics. Gen. Relat. Gravit. 43, 1153–1165 (2011). https://doi.org/10.1007/s10714-010-0996-2. arXiv:1010.5599 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabwal Phukon.

Appendix: Geodesic equations

Appendix: Geodesic equations

1.1 Kerr–Newman black hole

Geodesic equations for canonical ensemble:

$$\begin{aligned} &\ddot{s}+ \left[ \frac{ \begin{aligned}&2 \bigl \{ 16 \pi ^7 j^4+4 \pi ^3 \left( 15 s^4+30 \pi s^3+18 \pi ^2 s^2+\left( q^2+2\right) \pi ^4 q^2+3 \pi ^3 \left( 2 s q^2+s\right) \right) j^2 +\bigl \{ 6 s^3+2 \pi s^2 \\&\qquad +\left( 6 q^2-1\right) \pi ^2 s+2 \pi ^3 q^2\bigr \} \left( \pi ^2 q^2+s^2+\pi s\right) ^2\bigr \} \end{aligned} }{ \begin{aligned}&\Bigl \{ 16 \pi ^7 (4 s+3 \pi ) j^4+8 \pi ^3 \bigl \{ 6 s^5+15 \pi s^4+12 \pi ^2 s^3 +3 \left( 2 q^2+1\right) \pi ^3 s^2+2 \left( q^2+2\right) \pi ^4 q^2 s+3 \pi ^5 q^4\bigr \} j^2 \\&\qquad +\left( \pi ^2 q^2+s^2+\pi s\right) ^3 \left( 3 \pi ^2 q^2+3 s^2-\pi s\right) \Bigr \} \end{aligned}}\right. \\&\qquad \left. \vphantom{\frac{ \begin{aligned}&2 \bigl \{ 16 \pi ^7 j^4+4 \pi ^3 \left( 15 s^4+30 \pi s^3+18 \pi ^2 s^2+\left( q^2+2\right) \pi ^4 q^2+3 \pi ^3 \left( 2 s q^2+s\right) \right) j^2 +\bigl \{ 6 s^3+2 \pi s^2 \\&\qquad +\left( 6 q^2-1\right) \pi ^2 s+2 \pi ^3 q^2\bigr \} \left( \pi ^2 q^2+s^2+\pi s\right) ^2\bigr \} \end{aligned} }{ \begin{aligned}&\Bigl \{ 16 \pi ^7 (4 s+3 \pi ) j^4+8 \pi ^3 \bigl \{ 6 s^5+15 \pi s^4+12 \pi ^2 s^3 +3 \left( 2 q^2+1\right) \pi ^3 s^2+2 \left( q^2+2\right) \pi ^4 q^2 s+3 \pi ^5 q^4\bigr \} j^2 \\&\qquad +\left( \pi ^2 q^2+s^2+\pi s\right) ^3 \left( 3 \pi ^2 q^2+3 s^2-\pi s\right) \Bigr \} \end{aligned}}} -\frac{3}{2 s}+\frac{\left( 6 s^2+6 \pi s+\left( 2 q^2+1\right) \pi ^2\right) s}{-\pi ^4 q^4-4 j^2 \pi ^4+3 s^4+4 \pi s^3+\left( 2 q^2+1\right) \pi ^2 s^2}-\frac{2 \left( 2 \pi ^3 j^2+(2 s+\pi ) \left( \pi ^2 q^2+s^2+\pi s\right) \right) }{4 \pi ^3 (s+\pi ) j^2+\left( \pi ^2 q^2+s^2+\pi s\right) ^2}\right] \dot{s}^2 \\ &\qquad + \frac{ \begin{aligned}&8 \pi ^3 \Bigl \{ 64 \pi ^{11} \left( 4 s^2+7 \pi s+3 \pi ^2\right) j^7+48 \pi ^8 (4 s+3 \pi ) \left( \pi ^2 q^2+s^2+\pi s\right) ^2 j^5 \\&\qquad +4 \pi ^3 \bigl \{ 36 s^{10}+171 \pi s^9+\left( 24 q^2+341\right) \pi ^2 s^8+2 \left( 46 q^2+185\right) \pi ^3 s^7+18 \left( 10 q^2+13\right) \pi ^4 s^6 \\&\qquad +\left( -6 q^4+216 q^2+83\right) \pi ^5 s^5+\left( 8 q^6+58 q^4+140 q^2+13\right) \pi ^6 s^4+6 \left( 2 q^4+19 q^2+6\right) \pi ^7 q^2 s^3 \\&\qquad +2 \left( -2 q^4+26 q^2+25\right) \pi ^8 q^4 s^2+3 \left( q^2+12\right) \pi ^9 q^6 s+9 \pi ^{10} q^8\bigr \} j^3 \\&\qquad +\bigl \{ -18 s^7-63 \pi s^6+3 \left( 14 q^2-27\right) \pi ^2 s^5+\left( 53 q^2-45\right) \pi ^3 s^4-3 \pi ^4 \left( 2 q^4-8 q^2+3\right) s^3 \\&\qquad +\left( 7 q^2+5\right) \pi ^5 q^2 s^2+\pi ^6 q^4 \left( 9-2 q^2\right) s+3 \pi ^7 q^6\bigr \} \left( \pi ^2 q^2+s^2+\pi s\right) ^3 j \Bigr \} \dot{j} \dot{s} \end{aligned}}{ \begin{aligned}&\left( \pi ^4 q^4+4 j^2 \pi ^4-3 s^4-4 \pi s^3-\pi ^2 \left( 2 q^2+1\right) s^2\right) \left( 4 \pi ^3 (s+\pi ) j^2+\left( \pi ^2 q^2+s^2+\pi s\right) ^2\right) \\&\times \Bigl \{ 16 \pi ^7 (4 s+3 \pi ) j^4+8 \pi ^3 \bigl \{ 6 s^5+15 \pi s^4+12 \pi ^2 s^3+3 \left( 2 q^2+1\right) \pi ^3 s^2+2 \left( q^2+2\right) \pi ^4 q^2 s \\&\qquad +3 \pi ^5 q^4\bigr \} j^2+\left( \pi ^2 q^2+s^2+\pi s\right) ^3 \left( 3 \pi ^2 q^2+3 s^2-\pi s\right) \Bigr \} \end{aligned}}\\&\qquad -\frac{ \begin{aligned}&8 \pi ^4 s \left( \pi ^2 q^2+s^2+\pi s\right) \Bigl \{ 16 \pi ^6 \left( 2 s^2+3 \pi s+\pi ^2\right) \left( \pi ^2 q^2-s^2-\pi s\right) j^4+4 \pi ^2 \bigl \{ 18 s^8+75 \pi s^7 \\&\qquad +\left( 14 q^2+123\right) \pi ^2 s^6+\left( 49 q^2+99\right) \pi ^3 s^5+\left( -2 q^4+64 q^2+39\right) \pi ^4 s^4 \\&\qquad +\left( q^4+37 q^2+6\right) \pi ^5 s^3+\left( 2 q^4+7 q^2+8\right) \pi ^6 q^2 s^2+\left( 3 q^2+4\right) \pi ^7 q^4 s+2 \pi ^8 q^6\bigr \} j^2 \\&\qquad +\left( \pi ^2 q^2+s^2+\pi s\right) ^3 \left( \pi ^4 q^4+2 \pi ^3 s q^2-s^4+2 \left( 4 q^2-1\right) \pi s^3+\left( 8 q^2-1\right) \pi ^2 s^2\right) \Bigr \} \dot{j}^2 \end{aligned}}{ \begin{aligned}&\left( \pi ^4 q^4+4 j^2 \pi ^4-3 s^4-4 \pi s^3-\pi ^2 \left( 2 q^2+1\right) s^2\right) \bigl \{ 4 \pi ^3 (s+\pi ) j^2+\left( \pi ^2 q^2+s^2+\pi s\right) ^2\bigr \} \\&\times \Bigl \{ 16 \pi ^7 (4 s+3 \pi ) j^4+8 \pi ^3 \bigl \{ 6 s^5+15 \pi s^4+12 \pi ^2 s^3+3 \left( 2 q^2+1\right) \pi ^3 s^2+2 \left( q^2+2\right) \pi ^4 q^2 s \\&\qquad +3 \pi ^5 q^4\bigr \} j^2+\left( \pi ^2 q^2+s^2+\pi s\right) ^3 \left( 3 \pi ^2 q^2+3 s^2-\pi s\right) \Bigr \} \end{aligned}}=0, \end{aligned}$$
(92)

and

$$\begin{aligned} \ddot{j}- \frac{ \begin{aligned}&16 j (s+\pi ) s^2 \left( \pi ^2 q^2+s^2+\pi s\right) ^2 \Bigl \{ 4 \pi ^7 (s+\pi ) j^2+\pi ^3 (2 s+\pi ) \bigl \{ \pi ^4 q^4-2 \pi ^3 s q^2-3 s^4-6 \pi s^3 \\&\qquad -\pi ^2 \left( 2 q^2+3\right) s^2\bigr \}\Bigr \} \dot{j}^2+4 s \left( \pi ^2 q^2+s^2+\pi s\right) \Bigl \{ 16 \pi ^7 \left( 2 s^2+3 \pi s+\pi ^2\right) \left( \pi ^2 q^2-s^2-\pi s\right) j^4 \\&\qquad +4 \pi ^3 \bigl \{ 18 s^8+75 \pi s^7+\left( 14 q^2+123\right) \pi ^2 s^6+\left( 49 q^2+99\right) \pi ^3 s^5+\left( -2 q^4+64 q^2+39\right) \pi ^4 s^4 \\&\qquad +\left( q^4+37 q^2+6\right) \pi ^5 s^3+\left( 2 q^4+7 q^2+8\right) \pi ^6 q^2 s^2+\left( 3 q^2+4\right) \pi ^7 q^4 s+2 \pi ^8 q^6\bigr \} j^2 \\&\qquad +\pi \left( \pi ^2 q^2+s^2+\pi s\right) ^3 \left( \pi ^4 q^4+2 \pi ^3 s q^2-s^4+2 \left( 4 q^2-1\right) \pi s^3+\left( 8 q^2-1\right) \pi ^2 s^2\right) \Bigr \} \dot{s} \dot{j} \\&\qquad -j \Bigl \{ 64 \pi ^{11} \left( 4 s^2+7 \pi s+3 \pi ^2\right) j^6+48 \pi ^8 (4 s+3 \pi ) \left( \pi ^2 q^2+s^2+\pi s\right) ^2 j^4+4 \pi ^3 \bigl \{ 36 s^{10} \\&\qquad +171 \pi s^9+\left( 24 q^2+341\right) \pi ^2 s^8+2 \left( 46 q^2+185\right) \pi ^3 s^7+18 \left( 10 q^2+13\right) \pi ^4 s^6 \\&\qquad +\left( -6 q^4+216 q^2+83\right) \pi ^5 s^5+\left( 8 q^6+58 q^4+140 q^2+13\right) \pi ^6 s^4+6 \left( 2 q^4+19 q^2+6\right) \pi ^7 q^2 s^3 \\&\qquad +2 \left( -2 q^4+26 q^2+25\right) \pi ^8 q^4 s^2 +3 \left( q^2+12\right) \pi ^9 q^6 s+9 \pi ^{10} q^8\bigr \} j^2+\bigl \{ -18 s^7-63 \pi s^6 \\&\qquad +3 \left( 14 q^2-27\right) \pi ^2 s^5+\left( 53 q^2-45\right) \pi ^3 s^4-3 \pi ^4 \left( 2 q^4-8 q^2+3\right) s^3 +\left( 7 q^2+5\right) \pi ^5 q^2 s^2 \\&\qquad +\pi ^6 q^4 \left( 9-2 q^2\right) s+3 \pi ^7 q^6\bigr \} \left( \pi ^2 q^2+s^2+\pi s\right) ^3\Bigr \} \dot{s}^2 \end{aligned}}{ \begin{aligned}&4 s^2 (s+\pi ) \left( \pi ^2 q^2+s^2+\pi s\right) ^2 \left( \pi ^4 q^4+4 j^2 \pi ^4-3 s^4-4 \pi s^3-\pi ^2 \left( 2 q^2+1\right) s^2\right) \\&\times \left( 4 \pi ^3 (s+\pi ) j^2+\left( \pi ^2 q^2+s^2+\pi s\right) ^2\right) \end{aligned}}=0 \end{aligned}$$
(93)

where \(\dot{s}=\frac{\partial s}{\partial \tau }\), \(\ddot{s}=\frac{\partial ^2 s}{\partial \tau ^2}\), \(\dot{j}=\frac{\partial j}{\partial \tau }\), and \(\ddot{j}=\frac{\partial ^2 j}{\partial \tau ^2}\) with \(\tau\) being the affine parameter. Similar notation is used for the rest of the appendix.

Geodesic equations for grand canonical ensemble (in s vs \(\omega\) space):

$$\begin{aligned} \ddot{s}-\frac{ \begin{aligned}&4 \Bigl \{ -9 \left( \omega ^2-1\right) ^4 s^6+\left( \omega ^2-1\right) ^3 \bigl \{ 4 \left( 3 \omega ^2+1\right) \phi ^2-10 \omega ^2+47\bigr \} \pi s^5+\bigl \{ \left( 2 \omega ^2+1\right) \phi ^4 \\&\qquad +2 \left( 2 \omega ^4-23 \omega ^2-9\right) \phi ^2-2 \omega ^4+47 \omega ^2-100\bigr \} \left( \omega ^2-1\right) ^2 \pi ^2 s^4-5 \pi ^3 \left( \omega ^2-1\right) \bigl \{ \left( 2 \omega ^2+1\right) \phi ^4 \\&\qquad +2 \left( 2 \omega ^4-5 \omega ^2-3\right) \phi ^2-2 \omega ^4+17 \omega ^2-22\bigr \} s^3-\pi ^4 \bigl \{ -\phi ^4\left( 2 \omega ^4+13 \omega ^2+9\right) +\left( -16 \omega ^4+10 \omega ^2+22\right) \phi ^2 \\&\qquad +16 \omega ^4-73 \omega ^2+65\bigr \} s^2+\bigl \{ \left( 8 \omega ^2+7\right) \phi ^4-6 \phi ^2+10 \omega ^2-19\bigr \} \pi ^5 s+2 \left( \phi ^4-1\right) \pi ^6 \Bigr \} (s+\pi )^3 \dot{\omega }^2 s^3 \\&\qquad +4 \Bigl \{ 9 \left( \omega ^2-1\right) ^5 s^7+9 \left( 2 \omega ^2-7\right) \left( \omega ^2-1\right) ^4 \pi s^6+\left( \omega ^2-1\right) ^3 \left( \phi ^4-4 \phi ^2+8 \omega ^4-106 \omega ^2+189\right) \pi ^2 s^5 \\&\qquad -\pi ^3 \left( \omega ^2-1\right) ^2 \left( 9 \phi ^4+4 \left( 4 \omega ^2-3\right) \phi ^2+40 \omega ^4-264 \omega ^2+315\right) s^4-\pi ^4 \left( \omega ^2-1\right) \bigl \{ 2 \left( 7 \omega ^2-13\right) \phi ^4 \\&\qquad +4 \left( 5 \omega ^4-9 \omega ^2+2\right) \phi ^2-85 \omega ^4+356 \omega ^2-315\bigr \} s^3-\pi ^5 \bigl \{ -2 \omega ^6+95 \omega ^4-274 \omega ^2+\left( 8 \omega ^4-50 \omega ^2+34\right) \phi ^4 \\&\qquad +4 \left( 2 \omega ^6-7 \omega ^4+3 \omega ^2+2\right) \phi ^2+189\bigr \} s^2+\bigl \{ \left( 37 \omega ^2-21\right) \phi ^4+4 \left( \omega ^4+2 \omega ^2-3\right) \phi ^2-4 \omega ^4+51 \omega ^2-63\bigr \} \pi ^6 s \\&\qquad +\bigl \{ \left( 12 \omega ^2-5\right) \phi ^4+4 \left( \omega ^2-1\right) \phi ^2+2 \omega ^2-9\bigr \} \pi ^7\Bigr \} (s+\pi ) \omega \dot{s} \dot{\omega } s^3+\bigl \{ 9 \left( \omega ^2-1\right) ^6 s^{10}+9 \left( 3 \omega ^2-8\right) \\&\qquad\times \left( \omega ^2-1\right) ^5 \pi s^9+\left( \omega ^2-1\right) ^4 \bigl \{ \phi ^4-2 \left( \omega ^2+1\right) \phi ^2+28 \omega ^4-190 \omega ^2+253\bigr \} \pi ^2 s^8+\bigl \{ 8 \omega ^6-165 \omega ^4+578 \omega ^2 \\&\qquad +2 \left( \omega ^4-11 \omega ^2+8\right) \phi ^2-\phi ^4 \left( \omega ^2+8\right) -512\bigr \} \left( \omega ^2-1\right) ^3 \pi ^3 s^7-2 \pi ^4 \left( \omega ^2-1\right) ^2 \bigl \{ 20 \omega ^6-210 \omega ^4+497 \omega ^2 \\&\qquad +2 \left( 4 \omega ^2-7\right) \phi ^4+\left( 35 \omega ^4-67 \omega ^2+28\right) \phi ^2 -329\bigr \} s^6-\pi ^5 \left( \omega ^2-1\right) \bigl \{ -93 \omega ^6+605 \omega ^4-1064 \omega ^2 \\&\qquad +\left( 23 \omega ^4-87 \omega ^2+56\right) \phi ^4+2 \left( 26 \omega ^6-121 \omega ^4+151 \omega ^2-56\right) \phi ^2+560\bigr \} s^5-2 \pi ^6 \left( \omega ^2-1\right) \bigl \{ -2 \omega ^6+63 \omega ^4 \\&\qquad -210 \omega ^2+\left( 4 \omega ^4-51 \omega ^2+35\right) \phi ^4 +\left( 8 \omega ^6-61 \omega ^4+123 \omega ^2-70\right) \phi ^2+161\bigr \} s^4 +\bigl \{ \left( 61 \omega ^2-56\right) \phi ^4 \\&\qquad +2 \left( 13 \omega ^4-49 \omega ^2+56\right) \phi ^2-11 \omega ^4+94 \omega ^2-128\bigr \}\left( \omega ^2-1\right) \pi ^7 s^3+\bigl \{ 4 \left( 4 \omega ^4-10 \omega ^2+7\right) \phi ^4 \\&\qquad -2 \left( 9 \omega ^4-33 \omega ^2+28\right) \phi ^2+11 \omega ^4-44 \omega ^2+37\bigr \} \pi ^8 s^2 -\pi ^9 \left( \phi ^2-1\right) ^2 \left( 5 \omega ^2-8\right) s+\left( \phi ^2-1\right) ^2 \pi ^{10}\bigr \} \dot{s}^2 \end{aligned}}{ \begin{aligned}&2 s (s+\pi ) \left( -s \omega ^2+s+\pi \right) \bigl \{ -3 \left( \omega ^2-1\right) ^3 s^5+\left( \omega ^2-1\right) ^2 \left( \phi ^2-4 \omega ^2+11\right) \pi s^4-2 \pi ^2 \left( 2 \phi ^2-5 \omega ^2+7\right) \\&\left( \omega ^2-1\right) s^3 -6 \pi ^3 \left( \phi ^2+1\right) \left( \omega ^2-1\right) s^2-\pi ^4 \left( 4 \phi ^2-1\right) \left( \omega ^2-1\right) s+\left( \phi ^2-1\right) \pi ^5\bigr \} \bigl \{ -3 \left( \omega ^2-1\right) ^2 s^3 \\&\qquad -\pi \left( \omega ^2-1\right) \left( \phi ^2+2 \omega ^2-7\right) s^2 +\left( 2 \phi ^2+3 \omega ^2-5\right) \pi ^2 s+\left( \phi ^2-1\right) \pi ^3\bigr \} \end{aligned}}=0, \end{aligned}$$
(94)

and

$$\begin{aligned} \ddot{\omega }-&\frac{ \begin{aligned}&\omega \Bigl \{ -9 \left( \omega ^2-1\right) ^5 s^7-9 \pi \left( \omega ^2-1\right) ^4 \left( 2 \omega ^2-7\right) s^6-\pi ^2 \left( \omega ^2-1\right) ^3 \left( \phi ^4-4 \phi ^2+8 \omega ^4-106 \omega ^2+189\right) s^5 \\&\qquad +\left( \omega ^2-1\right) ^2 \bigl \{ 9 \phi ^4+4 \left( 4 \omega ^2-3\right) \phi ^2+40 \omega ^4-264 \omega ^2+315\big \} \pi ^3 s^4+\bigl \{ 2 \left( 7 \omega ^2-13\right) \phi ^4 \\&\qquad +4 \left( 5 \omega ^4-9 \omega ^2+2\right) \phi ^2-85 \omega ^4+356 \omega ^2-315\bigr \} \left( \omega ^2-1\right) \pi ^4 s^3+\bigl \{ -2 \omega ^6+95 \omega ^4-274 \omega ^2 \\&\qquad +\left( 8 \omega ^4-50 \omega ^2+34\right) \phi ^4+4 \left( 2 \omega ^6-7 \omega ^4+3 \omega ^2+2\right) \phi ^2+189\bigr \} \pi ^5 s^2+\bigl \{ \left( 21-37 \omega ^2\right) \phi ^4 \\&\qquad -4 \left( \omega ^4+2 \omega ^2-3\right) \phi ^2+4 \omega ^4-51 \omega ^2+63\bigr \} \pi ^6 s+\left( \left( 5-12 \omega ^2\right) \phi ^4-4 \left( \omega ^2-1\right) \phi ^2-2 \omega ^2+9\right) \pi ^7\Bigr \} \dot{s}^2 \end{aligned} }{ \begin{aligned}&\bigl \{ 4 s \left( -s \omega ^2+s+\pi \right) \bigr \} (s+\pi )^2 \bigl \{ 3 \left( \omega ^2-1\right) ^2 s^3+\left( \phi ^2+2 \omega ^2-7\right) \left( \omega ^2-1\right) \pi s^2 \\&\qquad +\left( -2 \phi ^2-3 \omega ^2+5\right) \pi ^2 s-\pi ^3 \left( \phi ^2-1\right) \bigr \} \Bigl \{ \left( \omega ^2-1\right) s^2-\pi \big \{ \left( 2 \omega ^2+1\right) \phi ^2-\omega ^2+2\big \} s-\pi ^2 \left( \phi ^2+1\right) \Bigr \} \end{aligned} } \\&\qquad -\frac{ \begin{aligned}&4 \Bigl \{ 9 \left( \omega ^2-1\right) ^4 s^6-\pi \left( \omega ^2-1\right) ^3 \bigl \{ 4 \left( 3 \omega ^2+1\right) \phi ^2-10 \omega ^2+47\bigr \} s^5-\pi ^2 \left( \omega ^2-1\right) ^2 \bigl \{ \left( 2 \omega ^2+1\right) \phi ^4 \\&\qquad +2 \left( 2 \omega ^4-23 \omega ^2-9\right) \phi ^2-2 \omega ^4+47 \omega ^2-100\bigr \} s^4+5 \bigl \{ \left( 2 \omega ^2+1\right) \phi ^4+2 \left( 2 \omega ^4-5 \omega ^2-3\right) \phi ^2-2 \omega ^4 \\&\qquad +17 \omega ^2-22\bigr \} \left( \omega ^2-1\right) \pi ^3 s^3+\bigl \{ -\phi ^4\left( 2 \omega ^4+13 \omega ^2+9\right) +\left( -16 \omega ^4+10 \omega ^2+22\right) \phi ^2+16 \omega ^4-73 \omega ^2 \\&\qquad +65\bigr \} \pi ^4 s^2 +\bigl \{ -\phi ^4\left( 8 \omega ^2+7\right) +6 \phi ^2-10 \omega ^2+19\bigr \} \pi ^5 s-2 \pi ^6 \left( \phi ^4-1\right) \Bigr \} \dot{s} \dot{\omega } \end{aligned} }{ \begin{aligned}&\bigl \{ 4 s \left( -s \omega ^2+s+\pi \right) \bigr \} \bigl \{ 3 \left( \omega ^2-1\right) ^2 s^3+\left( \phi ^2+2 \omega ^2-7\right) \left( \omega ^2-1\right) \pi s^2 \\&\qquad +\left( -2 \phi ^2-3 \omega ^2+5\right) \pi ^2 s -\pi ^3 \left( \phi ^2-1\right) \bigr \} \left( \left( \omega ^2-1\right) s^2-\pi \left( \left( 2 \omega ^2+1\right) \phi ^2-\omega ^2+2\right) s-\pi ^2 \left( \phi ^2+1\right) \right) \end{aligned} } \\&\qquad +\frac{ \begin{aligned}&4 s^2 \omega \Bigl \{ 3 \left( \omega ^2-1\right) ^3 s^5-\pi \left( \omega ^2-1\right) ^2 \bigl \{ 2 \left( 3 \omega ^2+5\right) \phi ^2-5 \omega ^2+12\bigr \} s^4-\pi ^2 \left( \omega ^2-1\right) \bigl \{ \left( 4 \omega ^2+5\right) \phi ^4 \\&\qquad +\left( 4 \omega ^4+6 \omega ^2-30\right) \phi ^2-2 \omega ^4+15 \omega ^2-18\bigr \} s^3+\bigl \{ \left( 5 \omega ^2+16\right) \phi ^4+\left( -4 \omega ^4+30 \omega ^2-30\right) \phi ^2-4 \omega ^4 \\&\qquad +15 \omega ^2-12\bigr \} \pi ^3 s^2+\bigl \{ \left( 6 \omega ^2+17\right) \phi ^4+2 \left( 4 \omega ^2-5\right) \phi ^2+2 \omega ^2-3\bigr \} \pi ^4 s+6 \pi ^5 \phi ^4\Bigr \} \dot{\omega }^2 \end{aligned} }{ \begin{aligned}&\bigl \{ 4 s \left( -s \omega ^2+s+\pi \right) \bigr \} \bigl \{ -3 \left( \omega ^2-1\right) ^2 s^3-\pi \left( \omega ^2-1\right) \left( \phi ^2+2 \omega ^2-7\right) s^2+\left( 2 \phi ^2+3 \omega ^2-5\right) \pi ^2 s \\&\qquad +\left( \phi ^2-1\right) \pi ^3\bigr \} \bigl \{ -s^2 \left( \omega ^2-1\right) +\left( \left( 2 \omega ^2+1\right) \phi ^2-\omega ^2+2\right) \pi s+\left( \phi ^2+1\right) \pi ^2\bigr \} \end{aligned} } =0. \end{aligned}$$
(95)

Geodesic equations for grand canonical ensemble (in s vs \(\phi\) space):

$$\begin{aligned} \ddot{s}-\frac{ \begin{aligned}&8 \Bigl \{ 6 \left( \omega ^2-1\right) ^3 s^4+\left( \phi ^2+2 \omega ^2-19\right) \left( \omega ^2-1\right) ^2 \pi s^3-3 \pi ^2 \left( \omega ^2-1\right) \left( \phi ^2+2 \omega ^2-7\right) s^2+\bigl \{ \left( \omega ^2+3\right) \phi ^2 \\&\qquad +5 \omega ^2-9\bigr \} \pi ^3 s+\left( \phi ^2-1\right) \pi ^4\Bigr \} \pi \left( -s \omega ^2+s+\pi \right) ^2 s^2 \dot{\phi }^2 (s+\pi )^3-8 \pi ^2 s \phi \left( -s \omega ^2+s+\pi \right) \\&\qquad\times \bigl \{ - s^6 \left( \phi ^2-\omega ^2-1\right) \left( \omega ^2-1\right) ^3 +2 \left( 3 \phi ^2+2 \omega ^2-3\right) \left( \omega ^2-1\right) ^2 \pi s^5+\left( \omega ^2-1\right) \bigl \{ \left( 7 \omega ^2-15\right) \phi ^2 \\&\qquad +5 \left( 2 \omega ^4-5 \omega ^2+3\right) \bigr \} \pi ^2 s^4+4 \left( \phi ^2+\omega ^2-1\right) \left( \omega ^4-6 \omega ^2+5\right) \pi ^3 s^3-\pi ^4 \left( \omega ^2-1\right) \left( 15 \phi ^2+7 \omega ^2-15\right) s^2 \\&\qquad -2 \pi ^5 \left( \phi ^2-1\right) \left( 2 \omega ^2-3\right) s+\left( \phi ^2-1\right) \pi ^6\bigr \} \dot{s} \dot{\phi } (s+\pi )+\bigl \{ 9 \left( \omega ^2-1\right) ^6 s^{10}+9 \left( 3 \omega ^2-8\right) \left( \omega ^2-1\right) ^5 \pi s^9 \\&\qquad +\left( \omega ^2-1\right) ^4 \bigl \{ \phi ^4-2 \left( \omega ^2+1\right) \phi ^2+28 \omega ^4-190 \omega ^2+253\bigr \} \pi ^2 s^8+\bigl \{ 8 \omega ^6-165 \omega ^4+578 \omega ^2 \\&\qquad +2 \left( \omega ^4-11 \omega ^2+8\right) \phi ^2-\phi ^4 \left( \omega ^2+8\right) -512\bigr \} \left( \omega ^2-1\right) ^3 \pi ^3 s^7-2 \pi ^4 \left( \omega ^2-1\right) ^2 \bigl \{ 20 \omega ^6-210 \omega ^4 \\&\qquad +497 \omega ^2+2 \left( 4 \omega ^2-7\right) \phi ^4+\left( 35 \omega ^4-67 \omega ^2+28\right) \phi ^2-329\bigr \} s^6-\pi ^5 \left( \omega ^2-1\right) \bigl \{ -93 \omega ^6+605 \omega ^4 \\&\qquad -1064 \omega ^2+\left( 23 \omega ^4-87 \omega ^2+56\right) \phi ^4+2 \left( 26 \omega ^6-121 \omega ^4+151 \omega ^2-56\right) \phi ^2+560\bigr \} s^5-2 \pi ^6 \left( \omega ^2-1\right) \\&\qquad\times \bigl \{ -2 \omega ^6+63 \omega ^4-210 \omega ^2+\left( 4 \omega ^4-51 \omega ^2+35\right) \phi ^4+\left( 8 \omega ^6-61 \omega ^4+123 \omega ^2-70\right) \phi ^2+161\bigr \} s^4 \\&\qquad +\bigl \{ \left( 61 \omega ^2-56\right) \phi ^4+2 \left( 13 \omega ^4-49 \omega ^2+56\right) \phi ^2-11 \omega ^4+94 \omega ^2-128\bigr \} \left( \omega ^2-1\right) \pi ^7 s^3 \\&\qquad +\bigl \{ 4 \left( 4 \omega ^4-10 \omega ^2+7\right) \phi ^4-2 \left( 9 \omega ^4-33 \omega ^2+28\right) \phi ^2+11 \omega ^4-44 \omega ^2+37\bigr \} \pi ^8 s^2-\pi ^9 \left( \phi ^2-1\right) ^2 \left( 5 \omega ^2-8\right) s \\&\qquad +\left( \phi ^2-1\right) ^2 \pi ^{10}\bigr \} \dot{s}^2 \end{aligned} }{ \begin{aligned}&2 s (s+\pi ) \left( -s \omega ^2+s+\pi \right) \bigl \{ -3 \left( \omega ^2-1\right) ^3 s^5+\left( \omega ^2-1\right) ^2 \left( \phi ^2-4 \omega ^2+11\right) \pi s^4-2 \pi ^2 \left( 2 \phi ^2-5 \omega ^2+7\right) \\&\times \left( \omega ^2-1\right) s^3 -6 \pi ^3 \left( \phi ^2+1\right) \left( \omega ^2-1\right) s^2-\pi ^4 \left( 4 \phi ^2-1\right) \left( \omega ^2-1\right) s+\left( \phi ^2-1\right) \pi ^5\bigr \} \bigl \{ -3 \left( \omega ^2-1\right) ^2 s^3 \\&\qquad -\pi \left( \omega ^2-1\right) \left( \phi ^2+2 \omega ^2-7\right) s^2 +\left( 2 \phi ^2+3 \omega ^2-5\right) \pi ^2 s+\left( \phi ^2-1\right) \pi ^3\bigr \} \end{aligned} }=0, \end{aligned}$$
(96)

and

$$\begin{aligned} \begin{aligned} \ddot{\phi }&-\frac{ \begin{aligned}&\dot{s} \dot{\phi } \Bigl \{ 6 s^4 \left( \omega ^2-1\right) ^3+\pi s^3 \left( \omega ^2-1\right) ^2 \left( 2 \omega ^2+\phi ^2-19\right) -3 \pi ^2 s^2 \left( \omega ^2-1\right) \left( 2 \omega ^2+\phi ^2-7\right) +\pi ^3 s \bigl \{ 5 \omega ^2 \\&\qquad +\left( \omega ^2+3\right) \phi ^2-9\bigr \} +\pi ^4 \left( \phi ^2-1\right) \Bigr \} \end{aligned} }{s \left( -s \omega ^2+s+\pi \right) \bigl \{ 3 s^3 \left( \omega ^2-1\right) ^2+\pi s^2 \left( \omega ^2-1\right) \left( 2 \omega ^2+\phi ^2-7\right) +\pi ^2 s \left( -3 \omega ^2-2 \phi ^2+5\right) -\pi ^3 \left( \phi ^2-1\right) \bigr \} } \\ \\&\qquad +\frac{ \begin{aligned}&\pi \dot{s}^2 \phi \bigl \{ -s^6 \left( \omega ^2-1\right) ^3 \left( -\omega ^2+\phi ^2-1\right) +2 \pi s^5 \left( \omega ^2-1\right) ^2 \left( 2 \omega ^2+3 \phi ^2-3\right) +\pi ^2 s^4 \left( \omega ^2-1\right) \\&\times \bigl \{ 5 \left( 2 \omega ^4-5 \omega ^2+3\right) +\left( 7 \omega ^2-15\right) \phi ^2\bigr \} +4 \pi ^3 s^3 \left( \omega ^4-6 \omega ^2+5\right) \left( \omega ^2+\phi ^2-1\right) -\pi ^4 s^2 \left( \omega ^2-1\right) \\&\times \left( 7 \omega ^2+15 \phi ^2-15\right) -2 \pi ^5 s \left( 2 \omega ^2-3\right) \left( \phi ^2-1\right) +\pi ^6 \left( \phi ^2-1\right) \bigr \} \end{aligned} }{ \begin{aligned}&4 s^2 (s+\pi )^2 \left( -s \omega ^2+s+\pi \right) ^2 \bigl \{ 3 s^3 \left( \omega ^2-1\right) ^2+\pi s^2 \left( \omega ^2-1\right) \left( 2 \omega ^2+\phi ^2-7\right) \\&\qquad +\pi ^2 s \left( -3 \omega ^2-2 \phi ^2+5\right) -\pi ^3 \left( \phi ^2-1\right) \bigr \} \end{aligned} } \\ \\&\qquad +\frac{\pi \phi \dot{\phi }^2 \left( s^2 \omega ^2-(s+\pi )^2\right) }{(3 s+2 \pi ) s^2 \omega ^4+s \omega ^2 \left( \pi s \phi ^2-3 (s+\pi ) (2 s+\pi )\right) -(s+\pi )^2 \left( \pi \left( \phi ^2-1\right) -3 s\right) } =0. \end{aligned} \end{aligned}$$
(97)

Geodesic equations for fixed charged ensemble (in s vs \(\omega\) space):

$$\begin{aligned} \ddot{s}- \frac{ \begin{aligned}&-4 (s+\pi )^2 \Bigl \{ 9 \left( \omega ^2-1\right) ^2 s^7+\left( 28 \omega ^4-75 \omega ^2+47\right) \pi s^6+\bigl \{31 \omega ^4-123 \omega ^2+2 \left( \omega ^2-1\right) ^2 q^2+100\bigr \} \pi ^2 s^5 \\&+\bigl \{ 14 \omega ^4-99 \omega ^2+2 \left( 2 \omega ^4-7 \omega ^2+5\right) q^2+110\bigr \} \pi ^3 s^4+\bigl \{ \left( \omega ^2-1\right) ^2 q^4+2 \left( \omega ^4-10 \omega ^2+9\right) q^2+2 \omega ^4 \\&-39 \omega ^2+65\bigr \} \pi ^4 s^3+\left( -3 \left( \omega ^2-1\right) q^4-14 \left( \omega ^2-1\right) q^2-6 \omega ^2+19\right) \pi ^5 s^2+\bigl \{ -3 \left( \omega ^2-1\right) q^4 \\&-4 \left( \omega ^2-1\right) q^2+2\bigr \} \pi ^6 s+\pi ^7 q^4 \left( 1-2 \omega ^2\right) \Bigr \} \dot{\omega }^2 s^4-4 \omega \Bigl \{ -9 \left( \omega ^2-1\right) ^3 s^{10}-9 \pi \left( \omega ^2-1\right) ^2 \left( 4 \omega ^2-7\right) s^9 \\& -\pi ^2 \left( \omega ^2-1\right) \bigl \{ 53 \omega ^4-214 \omega ^2+6 \left( \omega ^2-1\right) ^2 q^2+189\bigr \} s^8+\bigl \{ -34 \omega ^6+261 \omega ^4-534 \omega ^2 \\& -2 q^2 \left( \omega ^2-1\right) ^2 \left( 4 \omega ^2-13\right) +315\bigr \} \pi ^3 s^7+\bigl \{ -8 \omega ^6+126 \omega ^4-401 \omega ^2+3 \left( \omega ^2-1\right) ^3 q^4 \\& -2 q^2 \left( \omega ^6-15 \omega ^4+39 \omega ^2-25\right) +315\bigr \} \pi ^4 s^6+\bigl \{ -9 \left( \omega ^2-1\right) ^2 q^4+\left( 6 \omega ^4-60 \omega ^2+62\right) q^2+24 \omega ^4 \\&-166 \omega ^2+189\bigr \} \pi ^5 s^5+\bigl \{ 4 \left( \omega ^2-1\right) q^4+\left( 58-42 \omega ^2\right) q^2-33 \omega ^2+63\bigr \} \pi ^6 s^4+\bigl \{ -14 \left( \omega ^2-1\right) q^4 \\& +\left( 38-24 \omega ^2\right) q^2-2 \omega ^2+9\bigr \} \pi ^7 s^3+\bigl \{ \left( 21-13 \omega ^2\right) q^2-6 \omega ^2+14\bigr \} \pi ^8 q^2 s^2+\bigl \{ \left( 11-4 \omega ^2\right) q^2+2\bigr \} \pi ^9 q^2 s \\& +2 \pi ^{10} q^4\Bigr \} \dot{s} \dot{\omega } s^2+A \end{aligned} }{\begin{aligned}&2 s \left( -s \omega ^2+s+\pi \right) \Bigl \{ 3 \left( \omega ^2-1\right) s^4+\left( 5 \omega ^2-7\right) \pi s^3+\bigl \{ -q^2\left( \omega ^2-1\right) +2 \omega ^2-5\bigr \} \pi ^2 s^2+\left( 2 q^2-1\right) \pi ^3 s \\&\qquad +\pi ^4 q^2\Bigr \} \Bigl \{ 3 \left( \omega ^2-1\right) ^2 s^6+\left( 7 \omega ^4-18 \omega ^2+11\right) \pi s^5+\bigl \{ 3 \left( \omega ^2-1\right) q^2+4 \omega ^2-14\bigr \} \left( \omega ^2-1\right) \pi ^2 s^4 \\&\qquad -6 \pi ^3 \left( 2 q^2+1\right) \left( \omega ^2-1\right) s^3-\pi ^4 \bigl \{ 2 \left( 5 \omega ^2-9\right) q^2+1\bigr \} s^2+3 \pi ^6 q^2-\pi ^5 \left( 4 \left( \omega ^2-3\right) s q^2+s\right) \Bigr \} \end{aligned} } =0, \end{aligned}$$
(98)

and

$$\begin{aligned} \ddot{\omega }-\frac{-4 \Bigl \{ 3 \left( \omega ^2-1\right) s^4+\left( 5 \omega ^2-6\right) \pi s^3+\bigl \{ -q^2\left( \omega ^2-1\right) +2 \omega ^2-3\bigr \} \pi ^2 s^2+3 \pi ^3 q^2 s+2 \pi ^4 q^2\Bigr \} s \omega \dot{\omega }^2+B-C}{\begin{aligned}&4 \left( -s \omega ^2+s+\pi \right) \Bigl \{ 3 \left( \omega ^2-1\right) s^4+\left( 5 \omega ^2-7\right) \pi s^3+\bigl \{ -q^2\left( \omega ^2-1\right) \\&\qquad +2 \omega ^2-5\bigr \} \pi ^2 s^2+\left( 2 q^2-1\right) \pi ^3 s+\pi ^4 q^2\Bigr \} \end{aligned}}=0, \end{aligned}$$
(99)

where

$$\begin{aligned} A&= {} \frac{ \begin{aligned}&\Bigl \{ 9 \left( \omega ^2-1\right) ^4 s^{12}+9 \left( 5 \omega ^2-8\right) \left( \omega ^2-1\right) ^3 \pi s^{11}-\pi ^2 \left( \omega ^2-1\right) ^2 \bigl \{ -91 \omega ^4+316 \omega ^2+6 \left( \omega ^2-1\right) ^2 q^2 \\&\quad -253\bigr \} s^{10}+\bigl \{ 91 \omega ^6-545 \omega ^4+958 \omega ^2+2 \left( \omega ^2-1\right) ^2 \left( \omega ^2+28\right) q^2-512\bigr \} \left( \omega ^2-1\right) \pi ^3 s^9 \\&\quad +\bigl \{ 44 \omega ^6-406 \omega ^4+980 \omega ^2+9 \left( \omega ^2-1\right) ^3 q^4+2 \left( 5 \omega ^6+46 \omega ^4-167 \omega ^2+116\right) q^2-658\bigr \} \left( \omega ^2-1\right) \pi ^4 s^8 \\&\quad -\pi ^5 \left( \omega ^2-1\right) \bigl \{ -8 \omega ^6+157 \omega ^4-616 \omega ^2+3 \left( \omega ^2-1\right) ^2 \left( \omega ^2+24\right) q^4-2 q^2 \left( \omega ^6+82 \omega ^4-311 \omega ^2+280\right) \\&\quad +560\bigr \} s^7-2 \pi ^6 \bigl \{ 12 \omega ^6-126 \omega ^4+273 \omega ^2+14 \left( 2 \omega ^2-9\right) \left( \omega ^2-1\right) ^2 q^4+\left( -87 \omega ^6+456 \omega ^4-787 \omega ^2+434\right) q^2 \\&\quad -161\bigr \} s^6+\bigl \{ \left( -37 \omega ^6+386 \omega ^4-853 \omega ^2+504\right) q^4+2 \left( 42 \omega ^6-303 \omega ^4+665 \omega ^2-448\right) q^2+45 \omega ^4-162 \omega ^2 \\&\quad +128\bigr \} \pi ^7 s^5+\bigl \{ \left( -8 \omega ^6+254 \omega ^4-812 \omega ^2+630\right) q^4+2 \left( 8 \omega ^6-105 \omega ^4+345 \omega ^2-308\right) q^2+4 \omega ^4-30 \omega ^2 \\&\quad +37\bigr \} \pi ^8 s^4+\bigl \{ \left( 95 \omega ^4-479 \omega ^2+504\right) q^4+\left( -30 \omega ^4+202 \omega ^2-272\right) q^2-3 \omega ^2+8\bigr \} \pi ^9 s^3 \\&\quad +\bigl \{ 4 \left( 4 \omega ^4-40 \omega ^2+63\right) q^4+\left( 26 \omega ^2-70\right) q^2+1\bigr \} \pi ^{10} s^2+\left( q^2 \left( 72-23 \omega ^2\right) -8\right) \pi ^{11} q^2 s+9 \pi ^{12} q^4\Bigr \} \dot{s}^2 \end{aligned} }{s+\pi }, \end{aligned}$$
(100)
$$\begin{aligned} B&= {} \frac{ \begin{aligned}&\omega \Bigl \{ -9 \left( \omega ^2-1\right) ^3 s^{10}-9 \pi \left( \omega ^2-1\right) ^2 \left( 4 \omega ^2-7\right) s^9-\pi ^2 \left( \omega ^2-1\right) \bigl \{ 53 \omega ^4-214 \omega ^2+6 \left( \omega ^2-1\right) ^2 q^2+189\bigr \} s^8 \\&\quad +\bigl \{ -34 \omega ^6+261 \omega ^4-534 \omega ^2-2 q^2 \left( \omega ^2-1\right) ^2 \left( 4 \omega ^2-13\right) +315\bigr \} \pi ^3 s^7+\bigl \{ -8 \omega ^6+126 \omega ^4-401 \omega ^2 \\&\quad +3 \left( \omega ^2-1\right) ^3 q^4-2 q^2 \left( \omega ^6-15 \omega ^4+39 \omega ^2-25\right) +315\bigr \} \pi ^4 s^6+\bigl \{ -9 \left( \omega ^2-1\right) ^2 q^4+\left( 6 \omega ^4-60 \omega ^2+62\right) q^2 \\&\quad +24 \omega ^4-166 \omega ^2+189\bigr \} \pi ^5 s^5+\bigl \{ 4 \left( \omega ^2-1\right) q^4+\left( 58-42 \omega ^2\right) q^2-33 \omega ^2+63\bigr \} \pi ^6 s^4+\bigl \{ -14 \left( \omega ^2-1\right) q^4 \\&\quad +\left( 38-24 \omega ^2\right) q^2-2 \omega ^2+9\bigr \} \pi ^7 s^3+\bigl \{ \left( 21-13 \omega ^2\right) q^2-6 \omega ^2+14\bigr \} \pi ^8 q^2 s^2+\bigl \{\left( 11-4 \omega ^2\right) q^2+2\bigr \} \pi ^9 q^2 s \\&\quad +2 \pi ^{10} q^4\Bigr \} \dot{s}^2 \end{aligned} }{s^2 (s+\pi )^3 \left( \pi ^2 q^2+s^2+\pi s\right) }, \end{aligned}$$
(101)

and

$$\begin{aligned} C=\frac{ \begin{aligned}&4 \Bigl \{ -9 \left( \omega ^2-1\right) ^2 s^7+\left( -28 \omega ^4+75 \omega ^2-47\right) \pi s^6-\pi ^2 \bigl \{ 31 \omega ^4-123 \omega ^2+2 \left( \omega ^2-1\right) ^2 q^2+100\bigr \} s^5 \\&\qquad -\pi ^3 \bigl \{ 14 \omega ^4-99 \omega ^2+2 \left( 2 \omega ^4-7 \omega ^2+5\right) q^2+110\bigr \} s^4-\pi ^4 \bigl \{ \left( \omega ^2-1\right) ^2 q^4+2 \left( \omega ^4-10 \omega ^2+9\right) q^2 \\&\qquad +2 \omega ^4-39 \omega ^2+65\bigr \} s^3+\bigl \{ 3 \left( \omega ^2-1\right) q^4+14 \left( \omega ^2-1\right) q^2+6 \omega ^2-19\bigr \} \pi ^5 s^2+\bigl \{ 3 \left( \omega ^2-1\right) q^4 \\&\qquad +4 \left( \omega ^2-1\right) q^2-2\bigr \} \pi ^6 s+\left( 2 \omega ^2-1\right) \pi ^7 q^4\Bigr \} \dot{s} \dot{\omega } \end{aligned} }{(s+\pi ) \left( \pi ^2 q^2+s^2+\pi s\right) } \end{aligned}$$
(102)

Geodesic equations for fixed charged ensemble (in s vs q space):

$$\begin{aligned} \ddot{s}-\frac{ \begin{aligned}&8 \pi ^2 (s+\pi ) \left( -s \omega ^2+s+\pi \right) ^2 \Bigl \{ -3 \left( \omega ^2-1\right) s^5-9 \pi \left( \omega ^2-1\right) s^4+\bigl \{ - q^2 \left( \omega ^2-1\right) -8 \omega ^2+9\bigr \} \pi ^2 s^3 \\&\qquad +\bigl \{ \left( \omega ^2+3\right) q^2-2 \omega ^2+3\bigr \} \pi ^3 s^2+3 \pi ^4 q^2 s+\pi ^5 q^2\Bigr \} s \dot{q}^2-8 \pi ^2 q \Bigl \{ 3 \left( \omega ^2-1\right) ^3 s^8+4 \left( \omega ^2-5\right) \left( \omega ^2-1\right) ^2 \pi s^7 \\&\qquad -\pi ^2 \left( \omega ^2-1\right) \bigl \{ -\omega ^4+38 \omega ^2+3 \left( \omega ^2-1\right) ^2 q^2-57\bigr \} s^6+2 \bigl \{ -17 \omega ^4+58 \omega ^2+9 \left( \omega ^2-1\right) ^2 q^2-45\bigr \} \pi ^3 s^5\\&\qquad +\bigl \{-18 \omega ^4+83 \omega ^2+\left( 13 \omega ^4-58 \omega ^2+45\right) q^2-85\bigr \}) \pi ^4 s^4+4 \bigl \{ -\omega ^4+8 \omega ^2+\left( \omega ^4-12 \omega ^2+15\right) q^2 \\&\qquad -12\bigr \} \pi ^5 s^3+\bigl \{ \left( 45-21 \omega ^2\right) q^2+5 \left( \omega ^2-3\right) \bigr \} \pi ^6 s^2+3 \pi ^8 q^2-2 \pi ^7 \left( \left( 2 \omega ^2-9\right) s q^2+s\right) \Bigr \} \dot{s} \dot{q}+D \end{aligned} }{\begin{aligned}&2 \Bigl \{ 3 \left( \omega ^2-1\right) s^4+\left( 5 \omega ^2-7\right) \pi s^3+\bigl \{ -q^2\left( \omega ^2-1\right) +2 \omega ^2-5\bigr \} \pi ^2 s^2+\left( 2 q^2-1\right) \pi ^3 s+\pi ^4 q^2\Bigr \} \\&\times \Bigl \{ 3 \left( \omega ^2-1\right) ^2 s^6+\left( 7 \omega ^4-18 \omega ^2+11\right) \pi s^5+\bigl \{ 3 \left( \omega ^2-1\right) q^2+4 \omega ^2-14\bigr \}) \left( \omega ^2-1\right) \pi ^2 s^4 \\&\qquad -6 \pi ^3 \left( 2 q^2+1\right) \left( \omega ^2-1\right) s^3-\pi ^4 \bigl \{ 2 \left( 5 \omega ^2-9\right) q^2+1\bigr \} s^2+3 \pi ^6 q^2-\pi ^5 \bigl \{ 4 \left( \omega ^2-3\right) s q^2+s\bigr \} \Bigr \} \end{aligned} }=0, \end{aligned}$$
(103)

and

$$\begin{aligned} \ddot{q}+\frac{\pi ^2 q \dot{q}^2 \Bigl \{ \frac{s^2 \omega ^2}{(s+\pi )^2}-1\Bigr \}}{\frac{s^2 \omega ^2 \bigl \{ \pi ^2 \left( q^2-2\right) -3 s^2-5 \pi s\bigr \}}{(s+\pi )^2}-\pi ^2 q^2+3 s^2+\pi s}-E+F =0 \end{aligned}$$
(104)

where

$$\begin{aligned} D&= {} \frac{ \begin{aligned}&\Bigl \{ 9 \left( \omega ^2-1\right) ^4 s^{12}+9 \left( 5 \omega ^2-8\right) \left( \omega ^2-1\right) ^3 \pi s^{11}-\pi ^2 \left( \omega ^2-1\right) ^2 \bigl \{ -91 \omega ^4+316 \omega ^2+6 \left( \omega ^2-1\right) ^2 q^2 \\&\qquad -253\bigr \} s^{10}+\bigl \{ 91 \omega ^6-545 \omega ^4+958 \omega ^2+2 \left( \omega ^2-1\right) ^2 \left( \omega ^2+28\right) q^2-512\bigr \} \left( \omega ^2-1\right) \pi ^3 s^9 \\&\qquad +\bigl \{ 44 \omega ^6-406 \omega ^4+980 \omega ^2+9 \left( \omega ^2-1\right) ^3 q^4+2 \left( 5 \omega ^6+46 \omega ^4-167 \omega ^2+116\right) q^2-658\bigr \} \left( \omega ^2-1\right) \pi ^4 s^8 \\&\qquad -\pi ^5 \left( \omega ^2-1\right) \bigl \{ -8 \omega ^6+157 \omega ^4-616 \omega ^2+3 \left( \omega ^2-1\right) ^2 \left( \omega ^2+24\right) q^4-2 q^2 \left( \omega ^6+82 \omega ^4-311 \omega ^2+280\right) \\&\qquad +560\bigr \} s^7-2 \pi ^6 \bigl \{ 12 \omega ^6-126 \omega ^4+273 \omega ^2+14 \left( 2 \omega ^2-9\right) \left( \omega ^2-1\right) ^2 q^4+\big ( -87 \omega ^6+456 \omega ^4-787 \omega ^2 \\&\qquad +434\bigr ) q^2-161\bigr \} s^6+\bigl \{ \left( -37 \omega ^6+386 \omega ^4-853 \omega ^2+504\right) q^4+2 \left( 42 \omega ^6-303 \omega ^4+665 \omega ^2-448\right) q^2 \\&\qquad +45 \omega ^4 -162 \omega ^2+128\bigr \} \pi ^7 s^5+\bigl \{ \left( -8 \omega ^6+254 \omega ^4-812 \omega ^2+630\right) q^4+2 \left( 8 \omega ^6-105 \omega ^4+345 \omega ^2-308\right) q^2 \\&\qquad +4 \omega ^4-30 \omega ^2+37\bigr \} \pi ^8 s^4+\bigl \{ \left( 95 \omega ^4-479 \omega ^2+504\right) q^4+\left( -30 \omega ^4+202 \omega ^2-272\right) q^2-3 \omega ^2+8\bigr \} \pi ^9 s^3 \\&\qquad +\bigl \{ 4 \left( 4 \omega ^4-40 \omega ^2+63\right) q^4+\left( 26 \omega ^2-70\right) q^2+1\bigr \} \pi ^{10} s^2+\left( q^2 \left( 72-23 \omega ^2\right) -8\right) \pi ^{11} q^2 s+9 \pi ^{12} q^4\Bigr \} \dot{s}^2 \end{aligned} }{s (s+\pi ) \left( -s \omega ^2+s+\pi \right) }, \end{aligned}$$
(105)
$$\begin{aligned} E&= {} \frac{ \begin{aligned}&\dot{q} \dot{s} \bigl \{ \pi ^2 s^3 \bigl \{ -q^2 \left( \omega ^2-1\right) -8 \omega ^2+9\bigr \} +\pi ^3 s^2 \bigl \{ q^2 \left( \omega ^2+3\right) -2 \omega ^2+3\bigr \} +3 \pi ^4 q^2 s \\&\qquad +\pi ^5 q^2-3 s^5 \left( \omega ^2-1\right) -9 \pi s^4 \left( \omega ^2-1\right) \bigr \} \end{aligned} }{s (s+\pi ) \left( \pi ^2 s^2 \bigl \{ -q^2 \left( \omega ^2-1\right) +2 \omega ^2-5\bigr \} +\pi ^3 \left( 2 q^2-1\right) s+\pi ^4 q^2+3 s^4 \left( \omega ^2-1\right) +\pi s^3 \left( 5 \omega ^2-7\right) \right) }, \end{aligned}$$
(106)

and

$$\begin{aligned} F=\frac{ \begin{aligned}&q \dot{s}^2 \Bigl \{ -\pi ^2 s^6 \left( \omega ^2-1\right) \bigl \{ 3 q^2 \left( \omega ^2-1\right) ^2-\omega ^4+38 \omega ^2-57\bigr \} +2 \pi ^3 s^5 \bigl \{ 9 q^2 \left( \omega ^2-1\right) ^2-17 \omega ^4+58 \omega ^2-45\bigr \} \\&\qquad +\pi ^4 s^4 \bigl \{ q^2 \left( 13 \omega ^4-58 \omega ^2+45\right) -18 \omega ^4+83 \omega ^2-85\bigr \} +4 \pi ^5 s^3 \bigl \{ q^2 \left( \omega ^4-12 \omega ^2+15\right) -\omega ^4+8 \omega ^2-12\bigr \} \\&\qquad +\pi ^6 s^2 \bigl \{ q^2 \left( 45-21 \omega ^2\right) +5 \left( \omega ^2-3\right) \bigr \} -2 \pi ^7 \bigl \{ q^2 s \left( 2 \omega ^2-9\right) +s\bigr \} +3 \pi ^8 q^2+3 s^8 \left( \omega ^2-1\right) ^3 \\&\qquad +4 \pi s^7 \left( \omega ^2-5\right) \left( \omega ^2-1\right) ^2\Bigr \} \end{aligned}}{ \begin{aligned}&4 s^2 (s+\pi )^2 \left( -s \omega ^2+s+\pi \right) ^2 \Bigl \{ \pi ^2 s^2 \bigl \{ -q^2 \left( \omega ^2-1\right) +2 \omega ^2-5\bigr \} +\pi ^3 \left( 2 q^2-1\right) s+\pi ^4 q^2+3 s^4 \left( \omega ^2-1\right) \\&\qquad +\pi s^3 \left( 5 \omega ^2-7\right) \Bigr \} \end{aligned}} \end{aligned}$$
(107)

1.2 2. Kerr-AdS black hole

Geodesic equations for canonical ensemble:

$$\begin{aligned} \ddot{s}+\frac{ \begin{aligned}&16 \pi ^4 \dot{j}^2 (s+\pi )^3 s^4 \bigl \{ -12 \pi ^2 J^2 s^2 \left( 6 s^3+13 \pi s^2+9 \pi ^2 s+2 \pi ^3\right) +16 \pi ^6 J^4 (2 s+\pi )+(s+\pi )^3 s^4\bigr \} \\&\qquad -16 \pi ^3 \dot{j} (s+\pi ) \dot{s} s \bigl \{ -48 \pi ^8 J^5 s^2 \left( 4 s^2+7 \pi s+3 \pi ^2\right) -4 \pi ^3 J^3 s^4 (s+\pi )^2 \big ( 36 s^3+63 \pi s^2 \\&\qquad +44 \pi ^2 s+13 \pi ^3\big ) -64 \pi ^{11} J^7 (4 s+3 \pi )+9 J (s+\pi )^5 (2 s+\pi ) s^6\bigr \} +\dot{s}^2 \bigl \{ -256 \pi ^{14} J^8 \big ( 16 s^2 \\&\qquad +23 \pi s+9 \pi ^2\big ) -192 \pi ^{11} J^6 s^2 \left( 15 s^3+36 \pi s^2+29 \pi ^2 s+8 \pi ^3\right) -16 \pi ^6 J^4 s^4 (s+\pi )^2 \big ( 144 s^4 \\&\qquad +333 \pi s^3 +292 \pi ^2 s^2+119 \pi ^3 s+22 \pi ^4\big ) +12 \pi ^3 J^2 (s+\pi )^5 \left( 3 s^2+21 \pi s+8 \pi ^2\right) s^6 \\&\qquad -s^8 (s+\pi )^6 \left( 9 s^2+\pi ^2\right) \bigr \} \end{aligned} }{ \begin{aligned}&2 s (s+\pi ) \bigl \{ 4 \pi ^3 J^2+(s+\pi ) s^2\bigr \} \bigl \{ 24 \pi ^3 J^2 (s+\pi )^2 (2 s+\pi ) s^2+16 \pi ^7 J^4 (4 s+3 \pi ) \\&\qquad -(\pi -3 s) s^4 (s+\pi )^3\bigr \} \bigl \{ 4 \pi ^4 J^2-s^2 \left( 3 s^2+4 \pi s+\pi ^2\right) \bigr \} \end{aligned} }=0, \end{aligned}$$
(108)

and

$$\begin{aligned} \ddot{j}-\frac{ \begin{aligned}&64 \pi ^7 \dot{j} J^4 (s+\pi )^2 (2 s+\pi ) s^3 \dot{s}-4 \pi ^3 J^3 s^4 (s+\pi )^2 \bigl \{ 16 \pi ^4 \dot{j}^2 (s+\pi )-\left( 36 s^3+63 \pi s^2+44 \pi ^2 s+13 \pi ^3\right) \dot{s}^2\bigr \} \\&\qquad -48 \pi ^3 \dot{j} J^2 s^5 (s+\pi )^3 \left( 6 s^2+7 \pi s+2 \pi ^2\right) \dot{s}-3 J s^6 (s+\pi )^4 (2 s+\pi ) \bigl \{ 3 (s+\pi ) \dot{s}^2-16 \pi ^3 \dot{j}^2\bigr \} \\&\qquad +4 \pi \dot{j} (s+\pi )^5 s^7 \dot{s}+48 \pi ^8 J^5 \left( 4 s^2+7 \pi s+3 \pi ^2\right) s^2 \dot{s}^2+64 \pi ^{11} J^7 (4 s+3 \pi ) \dot{s}^2 \end{aligned} }{4 s^4 (s+\pi )^3 \left( 4 \pi ^3 J^2+(s+\pi ) s^2\right) \left( s^2 \left( 3 s^2+4 \pi s+\pi ^2\right) -4 \pi ^4 J^2\right) }=0. \end{aligned}$$
(109)

Geodesic equations for grand canonical ensemble:

$$\begin{aligned} \ddot{s}+\frac{ \begin{aligned}&4 (s+\pi )^3 s^3 \dot{\omega }^2 \bigl \{ 9 s^4 \left( \omega ^2-1\right) ^2+\pi s^3 \left( 10 \omega ^4-39 \omega ^2+29\right) +\pi ^2 s^2 \left( 2 \omega ^4-27 \omega ^2+33\right) +3 \pi ^3 s \left( 5-2 \omega ^2\right) \\&\qquad +2 \pi ^4\bigr \} -4 \dot{s} s^3 \omega \dot{\omega } \bigl \{ 9 s^6 \left( \omega ^2-1\right) ^3+27 \pi s^5 \left( \omega ^2-2\right) \left( \omega ^2-1\right) ^2 +\pi ^2 s^4 \left( 26 \omega ^6-159 \omega ^4+268 \omega ^2-135\right) \\&\qquad +2 \pi ^3 s^3 \left( 4 \omega ^6-51 \omega ^4+133 \omega ^2-90\right) -3 \pi ^4 s^2 \left( 8 \omega ^4-45 \omega ^2+45\right) +\pi ^5 s \left( 31 \omega ^2-54\right) +\pi ^6 \left( 2 \omega ^2-9\right) \bigr \} \\&\qquad -\dot{s}^2 \bigl \{ 9 s^8 \left( \omega ^2-1\right) ^4+27 \pi s^7 \left( \omega ^2-2\right) \left( \omega ^2-1\right) ^3+4 \pi ^2 s^6 \left( \omega ^2-1\right) ^2 \left( 7 \omega ^4-34 \omega ^2+34\right) +\pi ^3 s^5 \big ( 8 \omega ^8 \\&\qquad -117 \omega ^6+388 \omega ^4-465 \omega ^2+186\big )-6 \pi ^4 s^4 \left( 4 \omega ^6-29 \omega ^4+50 \omega ^2-25\right) +37 \pi ^5 s^3 \left( \omega ^4-3 \omega ^2+2\right) \\&\qquad +4 \pi ^6 s^2 \left( \omega ^4-6 \omega ^2+6\right) -3 \pi ^7 s \left( \omega ^2-2\right) +\pi ^8\bigr \} \end{aligned} }{ \begin{aligned}&2 s (s+\pi ) \left( -s \omega ^2+s+\pi \right) \bigl \{ 3 s^2 \left( \omega ^2-1\right) +2 \pi s \left( \omega ^2-2\right) -\pi ^2\bigr \} \bigl \{ 3 s^4 \left( \omega ^2-1\right) ^2+4 \pi s^3 \left( \omega ^4-3 \omega ^2+2\right) \\&\qquad -6 \pi ^2 s^2 \left( \omega ^2-1\right) -\pi ^4\bigr \} \end{aligned} }=0, \end{aligned}$$
(110)

and

$$\begin{aligned} \ddot{\omega }+\frac{ \begin{aligned}&-4 (s+\pi )^3 s^3 \omega \dot{\omega }^2 \bigl \{ 3 s \left( \omega ^2-1\right) +\pi \left( 2 \omega ^2-3\right) \bigr \} +\dot{s}^2 \omega \bigl \{ -9 s^5 \left( \omega ^2-1\right) ^3-9 \pi s^4 \left( \omega ^2-1\right) ^2 \left( 2 \omega ^2-5\right) \\&+2 \pi ^2 s^3 \left( -4 \omega ^6+39 \omega ^4-80 \omega ^2+45\right) +2 \pi ^3 s^2 \left( 12 \omega ^4-53 \omega ^2+45\right) +\pi ^4 s \left( 45-29 \omega ^2\right) +\pi ^5 \left( 9-2 \omega ^2\right) \bigr \} \\& +4 (s+\pi )^2 \dot{s} \dot{\omega } \bigl \{ 9 s^4 \left( \omega ^2-1\right) ^2+\pi s^3 \left( 10 \omega ^4-39 \omega ^2+29\right) +\pi ^2 s^2 \left( 2 \omega ^4-27 \omega ^2+33\right) +3 \pi ^3 s \left( 5-2 \omega ^2\right) \\& +2 \pi ^4\bigr \} \end{aligned} }{4 s (s+\pi )^3 \left( -s \omega ^2+s+\pi \right) \left( -3 s^2 \left( \omega ^2-1\right) -2 \pi s \left( \omega ^2-2\right) +\pi ^2\right) }=0. \end{aligned}$$
(111)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogoi, N.J., Mahanta, G.K. & Phukon, P. Geodesics in geometrothermodynamics (GTD) type II geometry of 4D asymptotically anti-de-Sitter black holes. Eur. Phys. J. Plus 138, 345 (2023). https://doi.org/10.1140/epjp/s13360-023-03938-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03938-x

Navigation