Skip to main content

Advertisement

Log in

Reflection of plane wave at an initially stressed rotating piezo-electro-magnetic-fiber-reinforced Composite half-space

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The mechanism of Nondestructive testing, especially for metal flaw detection, intelligent monitoring of infrastructure involves the imaging of Primary wave reflection in piezo composites using a transmitter and receiver circuit, transducer tool, and display devices. The signal received in the transducer carries information about crack location, flaw size, orientation, and other characteristics. Keeping these facts in consideration and with an aim to explore the reflection of a plane wave in a highly anisotropic material the present study is modeled. In the present study, the reflection profile of plan waves at the stress-free surface of a rotating Piezo-Electro-Magnetic-Fiber-Reinforce Composite (PEMFRC) half-space subjected to normal and shearing initial stresses is discussed. The micro-mechanics of PEMFRC are established and the effective material properties are derived. Incidence of a qP/qSV wave generates four reflected waves via. quasi-longitudinal/transverse (qP/qSV) waves, electro-acoustic and magneto-acoustic waves. The propagation directions of all reflected waves are graphically demonstrated. The amplitude ratios are derived in closed-form expressions, using secular equations and relevant boundary conditions by the help of Cramer’s rule. Furthermore, using these expressions and the energy flux relation, the energy ratios reflected bulk/surface waves and interaction energies are derived, which exhibit the influence of the existing parameters. Special cases of normal/grazing incidences of qP/qSV waves are discussed. Using the numerical data of BaTiO\(_3\) as matrix and CoFe\(_2\)O\(_4\) as fiber constituent, the energy ratios of reflected and interaction waves as well as total energy are illustrated graphically, and the energy conservation law is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings are available to download from Tan and Tong [16].

References

  1. M.T. Jam, H.M. Shodja, Interface effects on the electromagnetic radiation emanating from an embedded piezoelectric nano-fiber incident upon by sh-waves. Wave Motion 94, 102513 (2020). https://doi.org/10.1016/j.wavemoti.2020.102513

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Yu, X. Wang, Dispersion characteristics of wave propagation in layered piezoelectric structures: exact and simplified models. Wave Motion 96, 102559 (2020). https://doi.org/10.1016/j.wavemoti.2020.102559

    Article  MathSciNet  MATH  Google Scholar 

  3. A. El Baroudi, J. Le Pommellec, Bleustein-gulyaev waves in a finite piezoelectric material loaded with a viscoelastic fluid. Wave Motion 101, 102695 (2021). https://doi.org/10.1016/j.wavemoti.2020.102695

    Article  MathSciNet  MATH  Google Scholar 

  4. C.-W. Nan, Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50, 6082 (1994). https://doi.org/10.1103/PhysRevB.50.6082

    Article  ADS  Google Scholar 

  5. J.Y. Li, M.L. Dunn, Micromechanics of magnetoelectroelastic composite materials: average fields and effective behavior. J. Intell. Mater. Syst. Struct. 9, 404–416 (1998). https://doi.org/10.1177/1045389X9800900602

    Article  Google Scholar 

  6. L.-L. Ke, Y.-S. Wang, J. Yang, S. Kitipornchai, The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells. Smart Mater. Struct. 23, 125036 (2014). https://doi.org/10.1088/0964-1726/23/12/125036

    Article  Google Scholar 

  7. Z. Gong, Y. Zhang, E. Pan, C. Zhang, Three-dimensional general magneto-electro-elastic finite element model for multiphysics nonlinear analysis of layered composites. Appl. Math. Mech. 44, 53–72 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  8. M.S. Chaki, J. Bravo-Castillero, A mathematical analysis of anti-plane surface wave in a magneto-electro-elastic layered structure with non-perfect and locally perturbed interface. Eur. J. Mech. A/Solids 97, 104820 (2023)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. C.-W. Hsu, C. Hwu, Classical solutions for coupling analysis of unsymmetric magneto-electro-elastic composite laminated thin plates. Thin-Walled Struct. 181, 110112 (2022)

    Article  Google Scholar 

  10. H. Ezzin, M. Mkaoir, Z. Qian, M. Arefi, R. Das, Lamb wave analysis in anisotropic multilayer piezoelectric-piezomagnetic material. J. Appl. Comput. Mech. 8, 629–640 (2022)

    Google Scholar 

  11. C. Othmani, H. Zhang, C. Lü, Y.Q. Wang, A.R. Kamali, Orthogonal polynomial methods for modeling elastodynamic wave propagation in elastic, piezoelectric and magneto-electro-elastic composites-a review. Compos. Struct. 286, 115245 (2022)

    Article  Google Scholar 

  12. A.K. Singh, P. Rajput, S. Guha, S. Singh, Propagation characteristics of love-type wave at the electro-mechanical imperfect interface of a piezoelectric fiber-reinforced composite layer overlying a piezoelectric half-space. Eur. J. Mech. A/Solids 93, 104527 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. M.S. Chaki, A.K. Singh, Scattering and propagation characteristics of sh wave in reduced cosserat isotropic layered structure at irregular boundaries. Math. Methods Appl. Sci. 44, 6143–6163 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. M.S. Chaki, V.A. Eremeyev, A.K. Singh, Surface and interfacial anti-plane waves in micropolar solids with surface energy. Math. Mech. Solids 26, 708–721 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. M.S. Chaki, A.K. Singh, The impact of reinforcement and piezoelectricity on sh wave propagation in irregular imperfectly-bonded layered fgpm structures: an analytical approach. Eur. J. Mech. A/Solids 80, 103872 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. P. Tan, L. Tong, Investigation of loading assumptions on the effective electroelastic constants for pfrc materials. Compos. Struct. 57, 101–108 (2002). https://doi.org/10.1016/S0263-8223(02)00073-9

    Article  Google Scholar 

  17. A. Kumar, D. Chakraborty, Effective properties of thermo-electro-mechanically coupled piezoelectric fiber reinforced composites. Mater. Design 30, 1216–1222 (2009). https://doi.org/10.1016/j.matdes.2008.06.009

    Article  Google Scholar 

  18. J.H. Huang, H.-K. Liu, W.-L. Dai, The optimized fiber volume fraction for magnetoelectric coupling effect in piezoelectric-piezomagnetic continuous fiber reinforced composites. Int. J. Eng. Sci. 38, 1207–1217 (2000). https://doi.org/10.1016/S0020-7225(99)00073-7

    Article  Google Scholar 

  19. J. Lee, J.G. Boyd IV., D.C. Lagoudas, Effective properties of three-phase electro-magneto-elastic composites. Int. J. Eng. Sci. 43, 790–825 (2005). https://doi.org/10.1016/j.ijengsci.2005.01.004

    Article  MathSciNet  MATH  Google Scholar 

  20. H.-Y. Kuo, C.-Y. Peng, Magnetoelectricity in coated fibrous composites of piezoelectric and piezomagnetic phases. Int. J. Eng. Sci. 62, 70–83 (2013). https://doi.org/10.1016/j.ijengsci.2012.08.002

    Article  MathSciNet  MATH  Google Scholar 

  21. Y. Espinosa-Almeyda, H. Camacho-Montes, J. Otero, R. Rodríguez-Ramos, J. López-Realpozo, R. Guinovart-Díaz, F. Sabina, Interphase effect on the effective magneto-electro-elastic properties for three-phase fiber-reinforced composites by a semi-analytical approach. Int. J. Eng. Sci. 154, 103310 (2020). https://doi.org/10.1016/j.ijengsci.2020.103310

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Tan, L. Tong, Modeling for the electro-magneto-thermo-elastic properties of piezoelectric-magnetic fiber reinforced composites. Compos. A Appl. Sci. Manuf. 33, 631–645 (2002). https://doi.org/10.1016/S1359-835X(02)00015-5

    Article  Google Scholar 

  23. P. Tan, L. Tong, Prediction of non-linear electromagnetoelastic properties for piezoelectric/piezomagnetic fibre reinforced composites. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 218, 111–127 (2004). https://doi.org/10.1177/146442070421800205

    Article  Google Scholar 

  24. S. Singh, A. Singh, S. Guha, Reflection of plane waves at the stress-free/rigid surface of a micro-mechanically modeled piezo-electro-magnetic fiber-reinforced half-space. Waves in Random and Complex Media. 1–30 (2022)

  25. S. Guha, A. K. Singh, Frequency shifts and thermoelastic damping in distinct micro-/nano-scale piezothermoelastic fiber-reinforced composite beams under three heat conduction models. J. Ocean Eng. Sci. (2022)

  26. B.P. Rajak, S. Kundu, S. Gupta, Study of the sh-wave propagation in an fgpm layer imperfectly bonded over a microstructural coupled stress half-space. Acta Mech. 233, 597–616 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Singh, S. Singh, Application of polynomial functions in analyzing anti-plane wave profiles in a functionally graded piezoelectric–viscoelastic–poroelastic structure with buffer layer, in: Polynomial Paradigms: Trends and applications in science and engineering, (IOP Publishing, 2022)

  28. S.A. Sahu, M. Biswas, Mass loading effect on surface wave in piezoelectric-flexoelectric dielectric plate clamped on fiber-reinforced rigid base. Int. J. Mech. Mater. Des. 18, 919–938 (2022)

    Article  Google Scholar 

  29. M. Biswas, S.A. Sahu, Analysis of love-type acoustic wave in a functionally graded piezomagnetic plate sandwiched between elastic layers. Acta Mech. 233, 4295–4310 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  30. V. Rabbani, A. Bahari, M. Hodaei, P. Maghoul, N. Wu, Three-dimensional free vibration analysis of triclinic piezoelectric hollow cylinder. Compos. B Eng. 158, 352–363 (2019). https://doi.org/10.1016/j.compositesb.2018.09.033

    Article  Google Scholar 

  31. B. Jancewicz, Plane electromagnetic wave in pemc. J. Electromag. Waves Appl. 20, 647–659 (2006). https://doi.org/10.1163/156939306776137746

    Article  ADS  MathSciNet  Google Scholar 

  32. C. Yeh, Reflection and transmission of electromagnetic waves by a moving dielectric medium. J. Appl. Phys. 36, 3513–3517 (1965). https://doi.org/10.1063/1.1703029

    Article  ADS  Google Scholar 

  33. M.I. Othman, Y. Song, Reflection of magneto-thermo-elastic waves from a rotating elastic half-space. Int. J. Eng. Sci. 46, 459–474 (2008). https://doi.org/10.1016/j.ijengsci.2007.12.004

    Article  MathSciNet  MATH  Google Scholar 

  34. Y. Pang, Y.-S. Wang, J.-X. Liu, D.-N. Fang, Reflection and refraction of plane waves at the interface between piezoelectric and piezomagnetic media. Int. J. Eng. Sci. 46, 1098–1110 (2008). https://doi.org/10.1016/j.ijengsci.2008.04.006

    Article  MathSciNet  MATH  Google Scholar 

  35. B. Singh, A. Yadav, Reflection of plane waves from a free surface of a rotating fibre-reinforced elastic solid half-space with magnetic field, International. J. Appl. Math. Mech. 9, 75–91 (2013)

    Google Scholar 

  36. Y. Angel, Reflection and transmission of antiplane surface waves by a surface-breaking crack in a layered elastic solid. Wave Motion 20, 371–383 (1994). https://doi.org/10.1016/0165-2125(94)90020-5

    Article  MATH  Google Scholar 

  37. A. Shuvalov, A. Gorkunova, Cutting-off effect at reflection-transmission of acoustic waves in anisotropic media with sliding-contact interfaces. Wave Motion 30, 345–365 (1999). https://doi.org/10.1016/S0165-2125(99)00017-7

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Darinskii, E. Le Clezio, G. Feuillard, The role of electromagnetic waves in the reflection of acoustic waves in piezoelectric crystals. Wave Motion 45, 428–444 (2008). https://doi.org/10.1016/j.wavemoti.2007.08.001

    Article  MathSciNet  MATH  Google Scholar 

  39. P. Gourgiotis, H. Georgiadis, I. Neocleous, On the reflection of waves in half-spaces of microstructured materials governed by dipolar gradient elasticity. Wave Motion 50, 437–455 (2013). https://doi.org/10.1016/j.wavemoti.2012.10.004

    Article  MathSciNet  MATH  Google Scholar 

  40. M.A. Biot, The influence of initial stress on elastic waves. J. Appl. Phys. 11, 522–530 (1940). https://doi.org/10.1063/1.1712807

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Z.-H. Qian, F. Jin, T. Lu, K. Kishimoto, S. Hirose, Effect of initial stress on love waves in a piezoelectric structure carrying a functionally graded material layer. Ultrasonics 50, 84–90 (2010)

    Article  Google Scholar 

  42. X. Guo, P. Wei, Effects of initial stress on the reflection and transmission waves at the interface between two piezoelectric half spaces. Int. J. Solids Struct. 51, 3735–3751 (2014). https://doi.org/10.1016/j.ijsolstr.2014.07.008

    Article  Google Scholar 

  43. N. Aboel Nour, F.A. Alsheikh, Reflection and refraction of plane quasi-longitudinal waves at an interface of two piezoelectric media under initial stresses. Arch. Appl. Mech. 79, 843–857 (2009). https://doi.org/10.1007/s00419-008-0257-y

    Article  ADS  MATH  Google Scholar 

  44. N. Garg, Effect of initial stress on harmonic plane homogeneous waves in viscoelastic anisotropic media. J. Sound Vib. 303, 515–525 (2007). https://doi.org/10.1016/j.jsv.2007.01.013

    Article  ADS  Google Scholar 

  45. N. Abo-El-Nour, F.A. Al-sheikh, A.Y. Al-Hossain, The reflection phenomena of quasi-vertical transverse waves in piezoelectric medium under initial stresses. Meccanica 47, 731–744 (2012). https://doi.org/10.1007/s11012-011-9485-2

    Article  MathSciNet  MATH  Google Scholar 

  46. R. Chattaraj, S. Samal, N. Mahanti, Propagation of torsional surface wave in anisotropic poroelastic medium under initial stress. Wave Motion 48, 184–195 (2011). https://doi.org/10.1016/j.wavemoti.2010.10.003

    Article  MathSciNet  MATH  Google Scholar 

  47. M. Shams, M. Destrade, R.W. Ogden, Initial stresses in elastic solids: constitutive laws and acoustoelasticity. Wave Motion 48, 552–567 (2011). https://doi.org/10.1016/j.wavemoti.2011.04.004

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Shams, Effect of initial stress on love wave propagation at the boundary between a layer and a half-space. Wave Motion 65, 92–104 (2016). https://doi.org/10.1016/j.wavemoti.2016.04.009

    Article  MathSciNet  MATH  Google Scholar 

  49. S. Abo-Dahab, B. Singh, Rotational and voids effect on the reflection of p waves from stress-free surface of an elastic half-space under magnetic field and initial stress without energy dissipation. Appl. Math. Model. 37, 8999–9011 (2013). https://doi.org/10.1016/j.apm.2013.04.033

    Article  MathSciNet  MATH  Google Scholar 

  50. M.C. Singh, N. Chakraborty, Reflection of a plane magneto-thermoelastic wave at the boundary of a solid half-space in presence of initial stress. Appl. Math. Model. 39, 1409–1421 (2015). https://doi.org/10.1016/j.apm.2014.09.013

    Article  MathSciNet  MATH  Google Scholar 

  51. X. Guo, S. Ji, H. Liu, K. Ren, Dispersion relations of elastic waves in three-dimensional cubical piezoelectric phononic crystal with initial stresses and mechanically and dielectrically imperfect interfaces. Appl. Math. Model. 69, 405–424 (2019). https://doi.org/10.1016/j.apm.2018.12.023

    Article  MathSciNet  MATH  Google Scholar 

  52. C. Othmani, H. Zhang, C. Lü, Effects of initial stresses on guided wave propagation in multilayered pzt-4/pzt-5a composites: a polynomial expansion approach. Appl. Math. Model. 78, 148–168 (2020). https://doi.org/10.1016/j.apm.2019.10.017

    Article  MathSciNet  MATH  Google Scholar 

  53. A. A. Bent, Piezoelectric fiber composites for structural actuation, Ph.D. thesis. Massachusetts Institute of Technology (1994)

  54. S. Kapuria, P. Kumari, Three-dimensional isofield micromechanics model for effective electrothermoelastic properties of piezoelectric composites. J. Mech. Mater. Struct. 6, 249–265 (2011)

    Article  Google Scholar 

  55. X.-K. Xia, H.-S. Shen, Nonlinear vibration and dynamic response of fgm plates with piezoelectric fiber reinforced composite actuators. Compos. Struct. 90, 254–262 (2009). https://doi.org/10.1016/j.compstruct.2009.03.018

    Article  Google Scholar 

  56. X. Yuan, Z. Zhu, Wave reflection in piezoelectric half-plane. Int. J. Appl. Mech. 5, 1350014 (2013)

    Article  Google Scholar 

  57. A.H. Nayfeh, Wave propagation in layered anisotropic media: with application to composites (Elsevier, 1995)

  58. A. Chattopadhyay et al., Reflection and refraction of waves at the interface of an isotropic medium over a highly anisotropic medium. Acta Geophys. 54, 239–249 (2006)

    Article  ADS  Google Scholar 

  59. J. Achenbach, Wave propagation in elastic solids (Elsevier, 2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Koley.

Ethics declarations

Conflicts of interest

The authors reported no potential conflict of interest.

Appendix

Appendix

\(c_{11}=\frac{c_{11}^f c_{11}^m}{v_f c_{11}^m + (1-v_f) c_{11}^f}, \quad c_{12}=c_{11} \left(\frac{v_f c_{12}^f}{c_{11}^f}+\frac{(1-v_f) c_{12}^m}{c_{11}^m}\right),\quad c_{13}=c_{11}\left(\frac{v_f c_{13}^f}{c_{11}^f}+\frac{(1-v_f) c_{13}^m}{c_{11}^m}\right),\)

\(c_{22}=v_f c_{22}^f + (1-v_f) c_{22}^m + c_{12}^2/c_{11}-v_f (c_{12}^f)^2/c_{11}^f - (1-v_f)(c_{12}^m)^2/c_{11}^m,\)

\(c_{23}=v_f c_{23}^f + (1-v_f) c_{23}^m + c_{12} c_{13}/c_{11}-v_f c_{12}^f c_{13}^f/c_{11}^f - (1-v_f)c_{12}^m c_{13}^m/c_{11}^m,\)

\(c_{33}=v_f c_{33}^f + (1-v_f) c_{33}^m + c_{13}^2/c_{11}-v_f (c_{13}^f)^2/c_{11}^f - (1-v_f)(c_{13}^m)^2/c_{11}^m,\)

\(e_{31}=c_{11} \left( v_f e_{31}^f/c_{11}^f + (1-v_f)e_{31}^m/c_{11}^m \right) , \quad q_{31}=c_{11} \left( v_f q_{31}^f/c_{11}^f + (1-v_f)q_{31}^m/c_{11}^m \right) ,\)

\(e_{32}= v_f e_{32}^f + (1-v_f) e_{32}^m + c_{12} e_{31}/c_{11}-v_f c_{12}^f e_{31}^f/c_{11}^f - (1-v_f)c_{12}^m e_{31}^m/c_{11}^m,\)

\(e_{33}=v_f e_{33}^f + (1-v_f) e_{33}^m + c_{13} e_{31}/c_{11}-v_f c_{13}^f e_{31}^f/c_{11}^f - (1-v_f)c_{13}^m e_{31}^m/c_{11}^m,\)

\(q_{33}=v_f q_{33}^f + (1-v_f) q_{33}^m + c_{13} q_{31}/c_{11}-v_f c_{13}^f q_{31}^f/c_{11}^f - (1-v_f)c_{13}^m q_{31}^m/c_{11}^m,\)

\(\epsilon _{33}=v_f \epsilon _{33}^f + (1-v_f) \epsilon _{33}^m + e_{31}^2/c_{11}-v_f (e_{31}^f)^2/c_{11}^f - (1-v_f)(e_{31}^m)^2/c_{11}^m,\)

\(\mu _{33}=v_f \mu _{33}^f + (1-v_f) \mu _{33}^m + q_{31}^2/c_{11}-v_f (q_{31}^f)^2/c_{11}^f - (1-v_f)(q_{31}^m)^2/c_{11}^m,\)

\(\alpha _{33}=v_f \alpha _{33}^f + (1-v_f) \alpha _{33}^m + e_{31} q_{31}/c_{11}-v_f e_{31}^f q_{31}^f/c_{11}^f - (1-v_f)e_{31}^m q_{31}^m/c_{11}^m,\)

\(c_{55}^c = c_{55}^f(1 - v_f) + c_{55}^m v_f, \quad \epsilon _{11}^c = \epsilon _{11}^f (1 - v_f) + \epsilon _{11}^m v_f, \quad \mu _{11}^c = \mu _{11}^f (1 - v_f) + \mu _{11}^m v_f,\)

\(\mu _{11}=\frac{q_{15}^m \mu _{11}^m}{\mu _{11}^c} \left( \frac{\mu _{11}^m}{q_{15}^m} -\frac{q_{15}^m}{c_{55}^c+\frac{(1-v_f)^2 (e_{15}^f)^2}{\epsilon _{11}^c}} \right) , \quad q_{15}=\frac{q_{15}^m \mu _{11}^m}{\mu _{11}^c} \left( \frac{1}{v_f} -\frac{c_{55}^m}{c_{55}^c+\frac{(1-v_f)^2 (e_{15}^f)^2}{\epsilon _{11}^c}} \right) ,\)

\(c_{55}= \left( c_{55}^c + \frac{(1-v_f)(e_{15}^f)^2}{\epsilon _{11}^c} \right) \left( \frac{1}{v_f} - \frac{q_{15} \mu _{11}^c}{q_{15}^m \mu _{11}^f} \right) , \quad \alpha _{11}= \left( e_{15}^f - \frac{(1-v_f) e_{15}^f \epsilon _{11}^f}{\epsilon _{11}^c} \right) \left( \frac{\mu _{11}^m}{q_{15}^m}- \frac{\mu _{11}\mu _{11}^c}{q_{15}^m \mu _{11}^f} \right) ,\)

\(\epsilon _{11}= \left( e_{15}^f - \frac{(1-v_f) e_{15}^f \epsilon _{11}^f}{\epsilon _{11}^c} \right) \left( \frac{\alpha _{11} \mu _{11}^c}{q_{15}^m \mu _{11}^f} \right) +\frac{(\epsilon _{11}^f)^2}{\epsilon _{11}^c}, \quad e_{15}= \left( e_{15}^f - \frac{(1-v_f) e_{15}^f \epsilon _{11}^f}{\epsilon _{11}^c} \right) \left( \frac{1}{v_f} - \frac{q_{15} \mu _{11}^c}{q_{15}^m \mu _{11}^f} \right) ,\)

\(S_{1m}=ik(c_{55} q_m +c_{55} W +e_{15} \Phi + q_{15} \Psi ), \quad S_{2m}= ik(c_{13} + c_{33} q_m W +e_{33} q_m \Phi + q_{33} q_m \Psi ),\)

\(S_{3m}=ik (e_{31} + e_{33} q_m W - \epsilon _{33} q_m \Phi - \alpha _{33} q_m \Psi ), \quad S_{4m}= ik (q_{31} + q_{33} q_m W -\alpha _{33} q_m \Phi - \mu _{33} q_m \Psi ),\)

\(a_{11}=c_{11}+\tau _{11}^0+(c_{55}+\tau _{33}^0)q^2 +2\tau _{31}^0 q-\rho ( c^2+(\frac{\Omega }{k})), \quad a_{12}=(c_{13}+c_{55})q,\quad a_{13}=(e_{13}+e_{15})q,\)

\(a_{14}= (q_{13}+q_{15})q,\quad a_{21}=(c_{13}+c_{55})q,\quad a_{22}=c_{55}+\tau _{11}^0 + (c_{33} +\tau _{33}^0)q^2 -2\tau _{31}^0 q -\rho c^2,\)

\(a_{23}=(e_{15}+e_{33})q,\quad a_{24}=(q_{15}+q_{33})q,\quad a_{31}=(e_{13}+e_{15})q, \quad a_{32}=(e_{15}+e_{33})q, \quad a_{33}=-(\epsilon _{11}+\epsilon _{33}q^2),\)

\(a_{34}= -(\alpha _{11}+\alpha _{33}q^2), \quad a_{41}=(q_{13}+q_{15})q, \quad a_{42}=(q_{15}+q_{33})q, \quad a_{43}=-(\alpha _{11}+\alpha _{33}q^2),\)

\(a_{44}=-(\mu _{11}+\mu _{33}q^2),\)

\(P= \begin{bmatrix} S_{11} +\tau _{13}^0+ \tau _{33}^0 q_1 &{} S_{13}+\tau _{13}^0+ \tau _{33}^0 q_3 &{} S_{15}+\tau _{13}^0+ \tau _{33}^0 q_5 &{} S_{17}+\tau _{13}^0+ \tau _{33}^0 q_7\\ S_{21} +(\tau _{13}^0+ \tau _{33}^0 q_1)W_1 &{} S_{23}+(\tau _{13}^0+ \tau _{33}^0 q_3)W_3 &{} S_{25}+(\tau _{13}^0+ \tau _{33}^0 q_5)W_5 &{} S_{27}+(\tau _{13}^0+ \tau _{33}^0 q_7)W_7\\ S_{31} &{} S_{33} &{} S_{35} &{} S_{37}\\ S_{41} &{} S_{43} &{} S_{45} &{} S_{47} \end{bmatrix},\)

\(Q=[-s_{1r}+\tau _{13}^0+ \tau _{33}^0 q_r, -s_{2r}+(\tau _{13}^0+ \tau _{33}^0 q_r)W_r, -s_{3r}, -s_{4r}], \text{ where } \quad r=2,4, X=[U_1,\,U_3,\,U_5,\,U_7]\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Singh, S. & Koley, S. Reflection of plane wave at an initially stressed rotating piezo-electro-magnetic-fiber-reinforced Composite half-space. Eur. Phys. J. Plus 138, 296 (2023). https://doi.org/10.1140/epjp/s13360-023-03907-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03907-4

Navigation