Skip to main content
Log in

Assessing black swan events with the stochastic least action principle, Tsallis entropy and heavy-tailed distribution

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We present a formulation of the Stochastic Least Action Principle which encompasses random movements describing black swan events of non-dissipative systems in terms of heavy-tailed distributions. Black swan events are rare and drastic episodes such as earthquakes and financial crisis. We showed that black swan events of physical systems are proportional to nonlocal correlations, thus making the Tsallis entropy more appropriate for its description rather than the conventional Shannon-Boltzman-Gibbs entropy. As a consequence, we assessed the validity of the path probability distribution obtained using the non-additive Tsallis entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

Notes

  1. This is a kind of mechanical stochastic processes where we can consider the trajectories as markovian chains [3] and compute its path probability.

  2. The fractional derivative is a nonlocal operator, hence long-range interactions and memory effects can be modelled by using the fractional derivative in relation to space or time, respectively [11].

References

  1. H. Goldstein, C. Poole, J. Safko, Classical mechanics (American Association of Physics Teachers, New York, 2002)

    MATH  Google Scholar 

  2. T.L. Lin, R. Wang, W.P. Bi, A. El Kaabouchi, C. Pujos, F. Calvayrac, Q. Alexandre Wang, Path probability distribution of stochastic motion of non dissipative systems: a classical analog of Feynman factor of path integral. Chaos, Solitons Fractals 57, 129–136 (2013)

    Article  ADS  MATH  Google Scholar 

  3. M. Chaichian, A. Demichev, Path integrals in physics: volume I stochastic processes and quantum mechanics (CRC Press, Boca Raton, 2018)

    Book  MATH  Google Scholar 

  4. Q.A. Wang, Maximum path information and the principle of least action for chaotic system. Chaos, Solitons Fractals 23(4), 1253–1258 (2005)

    Article  ADS  MATH  Google Scholar 

  5. Q.A. Wang, A. El Kaabouchiu, From random motion of Hamiltonian systems to Boltzmann’s h theorem and second law of thermodynamics: a pathway by path probability. Entropy 16(2), 885–894 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  6. R.P. Feynman, A.R. Hibbs, D.F. Styer, Quantum mechanics and path integrals (Courier Corporation, New York, 2010)

    MATH  Google Scholar 

  7. H. Kleinert, Path integrals in quantum mechanics, statistics, polymer physics, and financial markets (World scientific, 2009)

    Book  MATH  Google Scholar 

  8. N.N. Taleb, Fooled by Randomness: the Hidden Role of Chance in Life and in the Markets, 2nd edn. (Random house, New York, 2005)

    Google Scholar 

  9. N.N. Taleb, The black swan: the impact of the highly improbable, vol. 2 (Random house, New York, 2007)

    Google Scholar 

  10. J.L. Casti, X-Events: Complexity Overload and the Collapse of Everything (William Morrow and Company, New York, 2013)

    Google Scholar 

  11. R. Klages, G. Radons, I.M. Sokolov, Anomalous Transport: Foundations and Applications (Wiley, New York, 2008)

    Book  Google Scholar 

  12. C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52(1), 479–487 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. P.T. Landsberg, Thermodynamics and Statistical Mechanics (Oxford University Press, Oxford, 1978)

    Google Scholar 

  14. S. Abe, Y. Okamoto, Nonextensive statistical mechanics and its applications (Springer Science and Business Media, Berlin, 2001)

    Book  MATH  Google Scholar 

  15. C. Tsallis, E.K. Lenzi, Anomalous diffusion: nonlinear fractional Fokker-Planck equation. Chem. Phys. 284(1–2), 341–347 (2002)

    Article  Google Scholar 

  16. M. Gell-Mann, C. Tsallis, Nonextensive Entropy: Interdisciplinary Applications (Oxford University Press, Oxford, 2004)

    Book  MATH  Google Scholar 

  17. Constantino Tsallis, Mecânica estatística de sistemas complexos. Revista Brasileira de Ensino de Física 43(2021)

  18. J.J.P. Anastasios Bountis, F.V. Veerman, Cauchy distributions for the integrable standard map. Phys. Lett. A 384(26), 126659 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Xiao, X. Peng, Y. Yuan, Q. Cai, H. Qiu, H. Tianyi, H. Zhang, W. Shengfa, X. Li, J. Chang et al., Innovation for measuring the distribution function with nonextensive single electric probe. AIP Adv. 11(8), 085228 (2021)

    Article  ADS  Google Scholar 

  20. A. Majhi, Non-extensive statistical mechanics and black hole entropy from quantum geometry. Phys. Lett. B 775, 32–36 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. E.T. Jaynes, Information theory and statistical mechanics. Phys. Rev. 106(4), 620 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. F. Reif, Fundamentals of statistical and thermal physics (Waveland Press, Long Grove, 2009)

    Google Scholar 

  23. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  24. J.N. Kapur, Hiremaglur K. Kesavan, Entropy Optimization Principles and their Applications, Entropy and Energy Dissipation in Water Resources. (Springer, New York, 1992), pp.3–20

    Book  Google Scholar 

  25. S.F. Gull, J. Skilling, Maximum entropy method in image processing, in IEE Proceedings F-Communications, Radar and Signal Processing, vol. 131 (IET, 1984), pp. 646–659

  26. V. Vedral, The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74(1), 197 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322, 549–560 (1905)

    Article  MATH  Google Scholar 

  28. N.R. Drapper, H. Smith, Applied Regression Analysis (Wiley-Interscience, Hoboken, 1998)

    Book  Google Scholar 

  29. R.M. Mazo, Brownian Motion: Fluctuations, Dynamics, and Applications, vol. 112 (Oxford University Press on Demand, Oxford, 2002)

    MATH  Google Scholar 

  30. H. Kleinert, Quantum field theory of black-swan events. Found. Phys. 44(5), 546–556 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. A. Wardak, P. Gong, Extended Anderson criticality in heavy-tailed neural networks. Phys. Rev. Lett. 129, 048103 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  32. S. Hooshangi, M.H. Namjoo, M. Noorbala, Rare events are nonperturbative: primordial black holes from heavy-tailed distributions. Phys. Lett. B 834, 137400 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  33. R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000)

    Book  MATH  Google Scholar 

  34. P. Paradisi, R. Cesari, F. Mainardi, F. Tampieri, The fractional Fick’s law for non-local transport processes. Phys. A 293(1–2), 130–142 (2001)

    Article  MATH  Google Scholar 

  35. C. Tsallis, R.S. Mendes, A.R. Plastino, The role of constraints within generalized nonextensive statistics. Phys. A 261(3–4), 534–554 (1998)

    Article  Google Scholar 

  36. A.E.l. Kaabouchi, Q.A. Wang, Least action principle and stochastic motion: a generic derivation of path probability. J. Phys. Conf. Ser. (Online) 604(2015)

  37. F. Black, M. Scholes, The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637–654 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Wang, K. Zhang, E. Wang, Kinetic paths, time scale, and underlying landscapes: A path integral framework to study global natures of nonequilibrium systems and networks. J. Chem. Phys. 133 (2010). https://doi.org/10.1063/1.3478547

  39. V.G. Ivancevic, T.T. Ivancevic, Quantum leap: From Dirac and Feynman, across the universe, to human body and mind (World Scientific, Singapore, 2008)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for his/her useful comments to improve the physical discussions of the manuscript significantly. This study was funded partially by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. R.B. acknowledges partial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Projects No. 305427/2019–9 and No. 421886/2018–8) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG Project No. APQ-01142–17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bufalo.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

e Bufalo, T.C., Bufalo, R., de Figueiredo, L.P.G. et al. Assessing black swan events with the stochastic least action principle, Tsallis entropy and heavy-tailed distribution. Eur. Phys. J. Plus 138, 282 (2023). https://doi.org/10.1140/epjp/s13360-023-03859-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03859-9

Navigation