Skip to main content
Log in

Effects of small oscillations on a diatomic molecule in an elastic medium

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

A Correction to this article was published on 06 October 2023

This article has been updated

Abstract

In this analysis, we have investigated the non-relativistic quantum dynamics of a diatomic molecule under effects of the Kratzer–Fues potential, a particular case of the Mie-type potential, and your small oscillations in an elastic environment characterized by the presence of a point-like defect which can be an impurity or a vacancy. Through a purely analytical development, we have determined the lowest energy state of a diatomic molecule for only small oscillations. Next, we generalize our system in which we consider the Kratzer–Fues potential plus its small oscillations. In both cases, we can note that the lowest energy allowed values are totally modified, not only by the presence of the point-type defect, but also by the small oscillations. In addition, another interesting quantum effect can be observed: the distance separating the two atoms has allowed values depend on the quantum numbers of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. (Authors’ comment: This is a theoretical study and no experimental data has been listed.)

Change history

References

  1. R.M. Eisberg, R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particle, 2nd edn. (Wiley, Hoboken, 1985)

    Google Scholar 

  2. M.O. Katanaev, I.V. Volovich, Ann. Phys. 216, 1 (1992)

    Article  ADS  Google Scholar 

  3. K.C. Valanis, V.P. Panoskaltsis, Acta Mech. 175, 77 (2005)

    Article  Google Scholar 

  4. W.C.F. da Silva, K. Bakke, R.L.L. Vitória, Eur. Phys. J. C 79, 657 (2019)

    Article  ADS  Google Scholar 

  5. M.J. Bueno, C. Furtado, K. Bakke, Phys. B 496, 45 (2016)

    Article  ADS  Google Scholar 

  6. G.A. Marques, V.B. Bezerra, Class. Quantum Grav. 19, 985 (2002)

    Article  ADS  Google Scholar 

  7. G.A. Marques, C. Furtado, V.B. Bezerra, F. Moraes, J. Phys. A Math. Gen. 34, 5945 (2001)

    Article  ADS  Google Scholar 

  8. E.R. Bezerra de Mello, C. Furtado, Phys. Rev. D 56, 1345 (1997)

    Article  ADS  Google Scholar 

  9. A.L. Cavalcanti de Oliveira, E.R. Bezerra de Mello, Int. J. Mod. Phys. A 18, 3175 (2003)

    Article  ADS  Google Scholar 

  10. G.A. Marques, V.B. Bezerra, Class. Quantum Grav. 19, 985 (2002)

    Article  ADS  Google Scholar 

  11. R.L.L. Vitória, H. Belich, Phys. Scr. 94, 125301 (2019)

    Article  ADS  Google Scholar 

  12. R.L.L. Vitória, T. Moy, H. Belich, Few-Body Syst. 63, 51 (2022)

    Article  ADS  Google Scholar 

  13. M. Barriola, A. Vilenkin, Phys. Rev. Lett. 63, 341 (1989)

    Article  ADS  Google Scholar 

  14. A. Vilenkin, E.P.S. Shellard, Strings and Other Topological Defects (Cambrigde University Press, Cambridge, 1994)

    MATH  Google Scholar 

  15. E.R. Bezerra de Mello, Braz. J. Phys. 31, 211 (2001)

    Article  ADS  Google Scholar 

  16. A. Boumali, H. Aounallah, Adv. High Energy Phys. 2018, 1031763 (2018)

    Article  Google Scholar 

  17. A.L. Cavalcanti de Oliveira, E.R. Bezerra de Mello, Class. Quantum Gravity 23, 5249 (2006)

    Article  ADS  Google Scholar 

  18. E.A.F. Bragança, R.L.L. Vitória, H. Belich, E.R. Bezerra de Mello, Eur. Phys. J. C 80, 206 (2020)

    Article  ADS  Google Scholar 

  19. H. Aounallah, A.R. Soares, R.L.L. Vitória, Eur. Phys. J. C 80, 447 (2020)

    Article  ADS  Google Scholar 

  20. A.R. Soares, R.L.L. Vitória, H. Aounallah, Eur. Phys. J. Plus 136, 966 (2021)

    Article  Google Scholar 

  21. J.D. Griffiths, Introduction to Quantum Mechanics (Prentice Hall, Upper Saddle River, 1995)

    MATH  Google Scholar 

  22. G. Mie, Ann. Phys. 316, 657 (1903)

    Article  Google Scholar 

  23. S. Stephan, J. Staubach, H. Hasse, Fluid Phase Equilibria 523, 112772 (2020)

    Article  Google Scholar 

  24. S. Stephan, M. Thol, J. Vrabec, H. Hasse, J. Chem. Inf. Model. 59, 4248 (2019)

    Article  Google Scholar 

  25. T. Liu, X. Fang, S. Xiao, Phys. Rev. B 104, 195428 (2021)

    Article  ADS  Google Scholar 

  26. L. Huang et al., Rep. Prog. Phys. 85, 046401 (2022)

    Article  ADS  Google Scholar 

  27. J. Berzinš et al., Opt. Express 28, 1539–1553 (2020)

    Article  ADS  Google Scholar 

  28. D. Agboola, Acta Phys. Pol. A 120, 371 (2009)

    Article  ADS  Google Scholar 

  29. S. Erkoç, R. Sever, Phys. Rev. D 33, 588 (1986)

    Article  ADS  Google Scholar 

  30. J.J. Peña, A. Menéndez, J. García-Ravelo, J. Morales, J. Phys. Conf. Ser. 633 (2015)

  31. R.J. Sadus, J. Chem. Phys. 149, 074504 (2018)

    Article  ADS  Google Scholar 

  32. G. Galliero et al., J. Chem. Phys. 130, 104704 (2009)

    Article  ADS  Google Scholar 

  33. S. Werth, K. Stöbener, M. Horsch, H. Hasse, Mol. Phys. 115, 1017 (2017)

    Article  ADS  Google Scholar 

  34. A. Kratzer, Z. Phys. 3, 289 (1920)

    Article  ADS  Google Scholar 

  35. E. Fues, Ann. Phys. 80, 367 (1926)

    Article  Google Scholar 

  36. C. Berkdemir, A. Berkdemir, J. Han, Chem. Phys. Lett. 417, 326 (2006)

    Article  ADS  Google Scholar 

  37. C.O. Edet, A.N. Ikot, J. Low Temp. Phys. 203, 84 (2021)

    Article  ADS  Google Scholar 

  38. M. Farout, R. Sever, S.M. Ikhdair, Chin. Phys. B 29, 060303 (2020)

    Article  ADS  Google Scholar 

  39. Q.W. Chao, Chin. Phys. B 12, 1054 (2003)

    Article  Google Scholar 

  40. N. Saad, R.L. Hall, H. Ciftci, Cent. Eur. J. Phys. 6, 717 (2008)

    Google Scholar 

  41. J.D. Griffiths, Introduction to the Quantum Mechanics (Prentice Hall, Upper Saddle River, 1995)

    MATH  Google Scholar 

  42. E. R. Figueiredo Medeiros, E. R. Bezerra de Mello, Eur. Phys. J. C 72, 2051 (2012)

  43. A. Ronveaux, Heun’s Differential Equations (Oxford University Press, Oxford, 1995)

    Book  MATH  Google Scholar 

  44. G.B. Arfken, H.J. Weber, Mathematical Methods for Physicists, 6th edn. (Elsevier Academic Press, New York, 2005)

    MATH  Google Scholar 

  45. A.D. Alhaidari, H. Bahlouli, J. Math. Phys. 61, 062103 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  46. M.K. Bahar, F. Yasuk, Adv. High Energy Phys. 2013, 814985 (2013)

    Article  Google Scholar 

  47. C. Alexandrou, P. de Forcrand, O. Jahn, Nucl. Phys. B 119, 667 (2003)

    Article  Google Scholar 

  48. R. Kumar, F. Chand, Phys. Scr. 85, 055008 (2012)

    Article  ADS  Google Scholar 

  49. S.H. Dong, Int. J. Theor. Phys. 39, 1119 (2000)

    Article  Google Scholar 

  50. S.H. Dong, Int. J. Theor. Phys. 40, 559 (2001)

    Article  Google Scholar 

  51. A.A. Rajabi, J. Sci. Islam. Rep. Iran 16, 73 (2005)

    Google Scholar 

  52. B. Patel, P.C. Vinodkumar, J. Phys. G Nucl. Part. Phys. 36, 035003 (2009)

    Article  ADS  Google Scholar 

  53. E.V.B. Leite, R.L.L. Vitória, H. Belich, Mod. Phys. Lett. A 34, 1950319 (2019)

    Article  ADS  Google Scholar 

  54. E.V.B. Leite, H. Belich, R.L.L. Vitória, Adv. High Energy Phys. 2019, 6740360 (2019)

    Article  Google Scholar 

  55. E.V.B. Leite, H. Belich, R.L.L. Vitória, Braz. J. Phys. 50, 744 (2020)

    Article  ADS  Google Scholar 

  56. R.L.L. Vitória, K. Bakke, Eur. Phys. J. Plus 131, 36 (2016)

    Article  Google Scholar 

  57. R.L.L. Vitória, C. Furtado, K. Bakke, Ann. Phys. 370, 128 (2016)

    Article  ADS  Google Scholar 

  58. R.L.L. Vitória, H. Belich, Adv. High Energy Phys. 2019, 1248393 (2019)

    Google Scholar 

  59. R.L.L. Vitória, H. Belich, Eur. Phys. J. Plus 135, 247 (2020)

    Article  Google Scholar 

  60. R.L.L. Vitória, H. Belich, Adv. High Energy Phys. 2020, 4208161 (2020)

    Article  Google Scholar 

  61. H. Hassanabadi, M. Hosseinpour, Eur. Phys. J. C 76, 10 (2016)

    Article  ADS  Google Scholar 

  62. A.N. Ikot, B.C. Lutfuoglu, M.I. Ngwueke, M.E. Udoh, S. Zare, H. Hassanabadi, Eur. Phys. J. Plus 131, 12 (2016)

    Article  Google Scholar 

  63. M. Eshghi, H. Mehraban, Eur. Phys. J. Plus 132, 3 (2017)

    Article  Google Scholar 

  64. B. Hamil, M. Merad, Eur. Phys. J. Plus 133, 5 (2018)

    Article  Google Scholar 

  65. B. Khosropour, Indian J. Phys. 92, 43 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank FAPEMA (Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão) and to CAPES (Coordenação de Aperfeiçomento de Pessoa de Nível Superior). R. L. L. Vitória was supported by the FAPEMA project No. BPV-00527/22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. L. Vitória.

Additional information

The original online version of this article was revised: In this article the funding from ‘CAPES (Coordenação de Aperfeiçomento de Pessoa de Nível Superior)’ was omitted. The original article has been corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitória, R.L.L., da Silva, K.A.T. Effects of small oscillations on a diatomic molecule in an elastic medium. Eur. Phys. J. Plus 138, 172 (2023). https://doi.org/10.1140/epjp/s13360-023-03803-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03803-x

Navigation