Skip to main content
Log in

Some remarks on scalar particles under the influence of noninertial effects in a spacetime with a screw dislocation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we study the effects induced by a rotating frame on Klein–Gordon equation in the spacetime with a screw dislocation. We consider the Klein-Gordon Oscillator in the geometry of the spacetime associated with a screw dislocation and include non-inertial effects by taking into account a coordinate transformation that introduce a rotating frame. We obtain solutions of the wave equation in terms of the confluent Heun function. The energy spectrum of the quantum oscillator is also studied, with special attention to the first three values of the quantum states. A comment on the analogy between the system considered and the Aharonov–Bohm effect for bound states is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availibility Statement

No data associated in the manuscript.

References

  1. S. Ölmez, V. Mandic, X. Siemens, Gravitational-wave stochastic background from kinks and cusps on cosmic strings. Phys. Rev. D 81(10), 104028 (2010)

    Article  ADS  Google Scholar 

  2. L.C.N. Santos, C.C. Barros Jr., Scalar bosons under the influence of noninertial effects in the cosmic string spacetime. Eur. Phys. J. C 77(3), 186 (2017)

    Article  ADS  Google Scholar 

  3. A.L. Cavalcanti de Oliveira, E.R. Bezerra de Mello, Exact solutions of the Klein-Gordon equation in the presence of a dyon, magnetic flux and scalar potential in the specetime of gravitational defects. Class. Quant. Grav. 23, 5249–5264 (2006)

    Article  ADS  MATH  Google Scholar 

  4. E.R. Figueiredo Medeiros, E.R. de Bezerra Mello, Relativistic quantum dynamics of a charged particle in cosmic string spacetime in the presence of magnetic field and scalar potential. Eur. Phys. J. 72, 2051 (2012)

    Article  ADS  Google Scholar 

  5. M. Hosseinpour, F.M. Andrade, E.O. Silva, H. Hassanabadi, Scattering and bound states for the hulthén potential in a cosmic string background. Eur. Phys. J. C 77, 270 (2017)

    Article  ADS  Google Scholar 

  6. L.C.N. Santos, C.C. Barros Jr., Relativistic quantum motion of spin-0 particles under the influence of noninertial effects in the cosmic string spacetime. Eur. Phys. J. C 78, 13 (2018)

    Article  ADS  Google Scholar 

  7. F.A.C. Neto, F.M. Da Silva, L.C.N. Santos, L.B. Castro, Scalar bosons with Coulomb potentials in a cosmic string background: scattering and bound states. Eur. Phys. J. Plus 135(1), 25 (2020)

    Article  Google Scholar 

  8. D.F. Lima, F.M. Andrade, L.B. Castro, C. Filgueiras, E.O. Silva, On the 2D Dirac oscillator in the presence of vector and scalar potentials in the cosmic string spacetime in the context of spin and pseudospin symmetries. Eur. Phys. J. C 79(7), 596 (2019)

    Article  ADS  Google Scholar 

  9. P.C.W. Davies, Scalar production in Schwarzschild and Rindler metrics. J. Phys. A Math. Gen. 8(4), 609 (1975)

    Article  ADS  Google Scholar 

  10. G. Marques, V. Bezerra, Hydrogen atom in the gravitational fields of topological defects. Phys. Rev. D 66(10), 105011 (2002)

    Article  ADS  Google Scholar 

  11. E.V.B. Leite, R.L.L. Vitória, H. Belich, Effects of the Kaluza-Klein theory on a Klein-Gordon particle with position-dependent mass. Mod. Phys. Lett. A 34(38), 1950319 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. F. Ahmed, The generalized Klein-Gordon oscillator in the background of cosmic string space-time with a linear potential in the Kaluza-Klein theory. Eur. Phys. J. C 80(3), 211 (2020)

    Article  ADS  Google Scholar 

  13. F. Ahmed, Linear confinement of generalized KG-oscillator with a uniform magnetic field in Kaluza-Klein theory and Aharonov-Bohm effect. Sci. Rep. 11(1), 1742 (2021)

    Article  ADS  Google Scholar 

  14. E.V.B. Leite, H. Belich, R.L.L. Vitória, Klein-Gordon oscillator under the effects of the cornell-type interaction in the Kaluza-Klein theory. Braz. J. Phys. 50(6), 744–749 (2020)

    Article  ADS  Google Scholar 

  15. L.C.N. Santos, C.E. Mota, C.C. Barros, L.B. Castro, V.B. Bezerra, Quantum dynamics of scalar particles in the space-time of a cosmic string in the context of gravity’s rainbow. Ann. Phys. 421, 168276 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. R.L.L. Vitória, K. Bakke, Rotating effects on the scalar field in the cosmic string spacetime, in the spacetime with space-like dislocation and in the spacetime with a spiral dislocation. Eur. Phys. J. C 78(3), 175 (2018)

    Article  ADS  Google Scholar 

  17. V.E. Ambrus, E. Winstanley, Rotating fermions inside a cylindrical boundary. Phys. Rev. D 93(10), 104014 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. G. Denardo, E. Percacci, Quantum Field Theory for a Rotating Observer. Nuovo Cim. B 48, 81–89 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  19. B. Mashhoon, Neutron interferometry in a rotating frame of reference. Phys. Rev. Lett. 61(23), 2639–2642 (1988)

    Article  ADS  Google Scholar 

  20. R.L.L. Vitória, Noninertial effects on a scalar field in a spacetime with a magnetic screw dislocation. Eur. Phys. J. C 79(10), 844 (2019)

    Article  ADS  Google Scholar 

  21. H.F. Mota, K. Bakke, Noninertial effects on the ground state energy of a massive scalar field in the cosmic string spacetime. Phys. Rev. D 89(2), 027702 (2014)

    Article  ADS  Google Scholar 

  22. K. Bakke, Rotating effects on the Dirac oscillator in the cosmic string spacetime. Gen. Rel. Grav. 45, 1847–1859 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. L.C.N. Santos, C.C. Barros Jr., Rotational effects on the Casimir energy in the space-time with one extra compactified dimension. Int. J. Mod. Phys. A 33, 1850122 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. L. Dantas, C. Furtado, A.S. Netto, Quantum ring in a rotating frame in the presence of a topological defect. Phys. Lett. A 379(1–2), 11–15 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. K. Bakke, Effects of rotation in the spacetime with the distortion of a vertical line into a vertical spiral. Eur. Phys. J. Plus 134(11), 546 (2019)

    Article  Google Scholar 

  26. I. Fonseca, K. Bakke, Rotating effects on the landau quantization for an atom with a magnetic quadrupole moment. J. Chem. Phys. 144(1), 014308 (2016)

    Article  ADS  Google Scholar 

  27. K. Bakke, R.F. Ribeiro, C. Salvador, On an electron in a nonuniform axial magnetic field in a uniformly rotating frame. Int. J. Mod. Phys. A 34(33), 1950229 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  28. L.C.N. Santos, F.M. Da Silva, C.E. Mota, V.B. Bezerra, Non-inertial effects on a non-relativistic quantum harmonic oscillator in the presence of a screw dislocation. Int. J. Geom. Methods Mod. Phys. 2350067 (2023)

  29. K. Bakke, Confinement of a Dirac particle to a hard-wall confining potential induced by noninertial effects. Mod. Phys. Lett. B 27, 1350018 (2013)

    Article  ADS  Google Scholar 

  30. K.S. Valanis, V.P. Panoskaltsis, Material metric, connectivity and dislocations. Acta Mech. 175, 77–103 (2005)

    Article  MATH  Google Scholar 

  31. H. Kleinert, Gauge Fields in Condensed Matter, Vol. II–Stresses and Defects. World Scientific Singapore (1989)

  32. M.O. Katanaev, I.V. Volovich, Theory of defects in solids and three-dimensional gravity. Ann. Phys. 216, 1–28 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. W.C.F. da Silva, K. Bakke, R.L.L. Vitória, Non-relativistic quantum effects on the harmonic oscillator in a spacetime with a distortion of a vertical line into a vertical spiral. Eur. Phys. J. C 79(8), 657 (2019)

    Article  ADS  Google Scholar 

  34. W.C.F. da Silva, K. Bakke, Non-relativistic effects on the interaction of a point charge with a uniform magnetic field in the distortion of a vertical line into a vertical spiral spacetime. Class. Quant. Grav. 36(23), 235002 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. V.B. Bezerra, Global effects due to a chiral cone. J. Math. Phys. 38, 2553–2564 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. S. Bruce, P. Minning, The Klein-Gordon oscillator. Il Nuovo Cimento A 106(5), 711–713 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  37. A. Ronveaux, Heun’s Differential Equations (Oxford University Press, Oxford, 1995)

    MATH  Google Scholar 

  38. D. Griffiths, Introduction to Quantum Mechanics, 2nd edn. (Prentice Hall, Upper Saddle River, 2004)

    Google Scholar 

  39. G. Arfken, Mathematical Methods for Physicists, 6th edn. (Elsevier Academic Press, New York, 2005)

    MATH  Google Scholar 

Download references

Acknowledgements

LCNS would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for partial financial support through the research Project No. 164762/2020-5 and FMS would like to thank CNPq for financial support through the research Project No. 165604/2020-4. VBB is partially supported by CNPq through the Research Project No. 307211/2020-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. N. Santos.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, L.C.N., da Silva, F.M., Mota, C.E. et al. Some remarks on scalar particles under the influence of noninertial effects in a spacetime with a screw dislocation. Eur. Phys. J. Plus 138, 174 (2023). https://doi.org/10.1140/epjp/s13360-023-03783-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03783-y

Navigation