Skip to main content
Log in

Quantum corrections to the Weyl quantization of the classical time of arrival

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A time of arrival (TOA) operator that is conjugate with the system Hamiltonian was constructed by Galapon without canonical quantization in Galapon (J. Math. Phys. 45:3180–3215, 2004). The constructed operator was expressed as an infinite series but only the leading term was investigated which was shown to be equal to the Weyl-quantized TOA-operator for entire analytic potentials. In this paper, we give a full account of the said operator by explicitly solving all the terms in the expansion. We interpret the terms beyond the leading term as the quantum corrections to the Weyl quantization of the classical arrival time. These quantum corrections are expressed as some integrals of the interaction potential and their properties are investigated in detail. In particular, the quantum corrections always vanish for linear systems but nonvanishing for nonlinear systems. Finally, we consider the case of an anharmonic oscillator potential as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

There are no data associated with this manuscript.

References

  1. Y. Aharonov, D. Bohm, Time in the quantum theory and the uncertainty relation for time and energy. Phys. Rev. 122, 1649–1658 (1961). https://doi.org/10.1103/PhysRev.122.1649

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. E. Pollak, W.H. Miller, New physical interpretation for time in scattering theory. Phys. Rev. Lett. 53, 115 (1984). https://doi.org/10.1103/PhysRevLett.53.115

    Article  ADS  Google Scholar 

  3. R. Giannitrapani, Positive-operator-valued time observable in quantum mechanics. Int. J. Theor. Phys. 36, 1575–1584 (1997). https://doi.org/10.1007/BF02435757

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Peres, Measurement of time by quantum clocks. Am. J. Phys. 48, 552–557 (1980). https://doi.org/10.1119/1.12061

    Article  ADS  MathSciNet  Google Scholar 

  5. J. Hilgevoord, Time in quantum mechanics. Am. J. Phys. 70, 301–306 (2002). https://doi.org/10.1119/1.1430697

    Article  ADS  Google Scholar 

  6. V.S. Olkhovsky, E. Recami, Time as a quantum observable. Int. J. Mod. Phys. A 22, 5063–5087 (2007). https://doi.org/10.1142/S0217751X0703724X

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. V.S. Olkhovsky, E. Recami, New developments in the study of time as a quantum observable. Int. J. Mod. Phys. B 22, 1877–1897 (2008). https://doi.org/10.1142/S0217979208039162

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. G. Muga, R.S. Mayato, I. Egusquiza, Time in quantum mechanics (Springer, Berlin, 2008)

    Book  MATH  Google Scholar 

  9. G. Muga, A. Ruschhaupt, A. del Camo, eds., Time in Quantum Mechanics, Vol. 2 (Springer-Verlag Berlin Heidelberg, 2009). https://doi.org/10.1007/978-3-642-03174-8

  10. M. Bauer, On the problem of time in quantum mechanics. Eur. J. Phys. 38, 035402 (2017). https://doi.org/10.1088/1361-6404/aa6025

    Article  ADS  MATH  Google Scholar 

  11. J. Leon, L. Maccone, The Pauli objection. Found. Phys. 47, 1597–1608 (2017). https://doi.org/10.1007/s10701-017-0115-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. L. Maccone, K. Sacha, Quantum measurements of time. Phys. Rev. Lett. 124, 110402 (2020). https://doi.org/10.1103/PhysRevLett.124.110402

    Article  ADS  MathSciNet  Google Scholar 

  13. D. Jurman, H. Nikolić, The time distribution of quantum events. Phys. Lett. A 396, 127247 (2021). https://doi.org/10.1016/j.physleta.2021.127247

    Article  MathSciNet  MATH  Google Scholar 

  14. G.R. Allcock, The time of arrival in quantum mechanics I formal considerations. Ann. Phys. 53, 253–285 (1969). https://doi.org/10.1016/0003-4916(69)90251-6

    Article  ADS  Google Scholar 

  15. G.R. Allcock, The time of arrival in quantum mechanics II the individual measurement. Ann. Phys. 53, 286–310 (1969). https://doi.org/10.1016/0003-4916(69)90252-8

    Article  ADS  Google Scholar 

  16. G.R. Allcock, The time of arrival in quantum mechanics III the measurement ensemble. Ann. Phys. 53, 311–348 (1969). https://doi.org/10.1016/0003-4916(69)90253-X

    Article  ADS  Google Scholar 

  17. N. Grot, C. Rovelli, R.S. Tate, Time of arrival in quantum mechanics. Phys. Rev. A 54, 4676–4690 (1996). https://doi.org/10.1103/PhysRevA.54.4676

    Article  ADS  MathSciNet  Google Scholar 

  18. Y. Aharonov, J. Oppenheim, S. Popescu, B. Reznik, W.G. Unruh, Measurement of time of arrival in quantum mechanics. Phys. Rev. A 57, 4130–4139 (1998). https://doi.org/10.1103/PhysRevA.57.4130

    Article  ADS  MathSciNet  Google Scholar 

  19. C.R. Leavens, Time of arrival in quantum and Bohmian mechanics. Phys. Rev. A 58, 840–847 (1998). https://doi.org/10.1103/PhysRevA.58.840

    Article  ADS  MathSciNet  Google Scholar 

  20. V. Delgado, Probability distribution of arrival times in quantum mechanics. Phys. Rev. A 57, 762–770 (1998). https://doi.org/10.1103/PhysRevA.57.762

    Article  ADS  MathSciNet  Google Scholar 

  21. A.D. Baute, R.S. Mayato, J.P. Palao, J.G. Muga, L. Egusquiza, Time-of-arrival distribution for arbitrary potentials and Wigner’s time-energy uncertainty relation. Phys. Rev. A 61, 022118 (2000). https://doi.org/10.1103/PhysRevA.61.022118

    Article  ADS  Google Scholar 

  22. Z. Wang, C. Xiong, How to introduce time operator. Ann. Phys. 322, 2304–2314 (2007). https://doi.org/10.1016/j.aop.2006.10.007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. J.G. Muga, C.R. Leavens, Arrival time in quantum mechanics. Phys. Rep. 338, 353–438 (2000). https://doi.org/10.1016/S0370-1573(00)00047-8

    Article  ADS  MathSciNet  Google Scholar 

  24. J. Leon, J. Julve, P. Pitanga, F.J. de Urries, Time of arrival in the presence of interactions. Phys. Rev. A. 61, 062101 (2000). https://doi.org/10.1103/PhysRevA.61.062101

    Article  ADS  MathSciNet  Google Scholar 

  25. E.A. Galapon, Quantum-classical correspondence of dynamical observables, quantization, and the time of arrival correspondence problem. Opt. Spectrosc. 91, 399–405 (2001). https://doi.org/10.1134/1.1405219

    Article  ADS  Google Scholar 

  26. E.A. Galapon, Shouldn’t there be an antithesis to quantization? J. Math. Phys. 45, 3180–3215 (2004). https://doi.org/10.1063/1.1767297

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. E.A. Galapon, J.J.P. Magadan, Quantizations of the classical time of arrival and their dynamics. Ann. Phys. 397, 278–302 (2018). https://doi.org/10.1016/j.aop.2018.08.005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. E.A. Galapon, Theory of quantum arrival and spatial wave function collapse on the appearance of particle. Proc. R. Soc. A. 465, 71–86 (2009). https://doi.org/10.1098/rspa.2008.0278

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. E.A. Galapon, Theory of quantum first time of arrival via spatial confinement I: confined time of arrival operators for continuous potentials. Int. J. Mod. Phys. A 21, 6351–6381 (2006). https://doi.org/10.1142/S0217751X06034215

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. E.A. Galapon, Pauli’s theorem and quantum canonical pairs: the consistency of a bounded, self-adjoint time operator canonically conjugate to a Hamiltonian with non-empty point spectrum. Proc. R. Soc. Lond. A 458, 451–472 (2002). https://doi.org/10.1098/rspa.2001.0874

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. J.J. Halliwell, J. Evaeus, J. London, Y. Malik, A self-adjoint arrival time operator inspired by measurement models. Phys. Lett. A 379, 2445–2451 (2015). https://doi.org/10.1016/j.physleta.2015.07.040

    Article  ADS  MATH  Google Scholar 

  32. E. Pollak, Transition path time distribution, tunneling times, friction, and uncertainty. Phys. Rev. Lett. 118, 070401 (2017). https://doi.org/10.1103/PhysRevLett.118.070401

    Article  ADS  Google Scholar 

  33. D.L.B. Sombillo, E.A. Galapon, Barrier-traversal-time operator and the time-energy uncertainty relation. Phys. Rev. A. 97, 062127 (2018). https://doi.org/10.1103/PhysRevA.97.062127

    Article  ADS  Google Scholar 

  34. E.A. Galapon, R.F. Caballar, R.T. Bahague Jr., Confined quantum time of arrivals. Phys. Rev. Lett. 93, 180406 (2004). https://doi.org/10.1103/PhysRevLett.93.180406

    Article  ADS  Google Scholar 

  35. C. Anastopoulos, N. Savvidou, Time-of-arrival probabilities and quantum measurements. J. Math. Phys. 47, 122106 (2006). https://doi.org/10.1063/1.2399085

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. D.L.B. Sombillo, E.A. Galapon, Particle detection and non-detection in a quantum time of arrival measurement. Ann. Phys. 364, 261–273 (2016). https://doi.org/10.1016/j.aop.2015.11.008

    Article  ADS  MathSciNet  Google Scholar 

  37. S. Das, M. Nöth, Times of arrival and gauge invariance. Proc. R. Soc. A 477, 20210101 (2021). https://doi.org/10.1098/rspa.2021.0101

    Article  ADS  MathSciNet  Google Scholar 

  38. E.A. Galapon, Self-adjoint time operator is the rule for discrete semi-bounded Hamiltonians. Proc. R. Soc. Lond. A 458, 2671–2689 (2002). https://doi.org/10.1098/rspa.2002.0992

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. E.A. Galapon, F. Delgado, J.G. Muga, I. Egusquiza, Transition from discrete to continuous time-of-arrival distribution for a quantum particle. Phys. Rev. A 72, 042107 (2005). https://doi.org/10.1103/PhysRevA.72.042107

    Article  ADS  MathSciNet  Google Scholar 

  40. E.A. Galapon, R.F. Caballar, R. Bahague Jr., Confined quantum time of arrival for the vanishing potential. Phys. Rev. A 72, 062107 (2005). https://doi.org/10.1103/PhysRevA.72.062107

    Article  ADS  MathSciNet  Google Scholar 

  41. E.A. Galapon, A. Villanueva, Quantum first time-of-arrival operators. J. Phys. A Math. Theor. 41, 455302 (2008). https://doi.org/10.1088/1751-8113/41/45/455302

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. R.F. Caballar, E.A. Galapon, Characterizing multiple solutions to the time-energy canonical commutation relation via quantum dynamics. Phys. Lett. A 373, 2660–2666 (2009). https://doi.org/10.1016/j.physleta.2009.05.068

    Article  ADS  MATH  Google Scholar 

  43. R.F. Caballar, L.R. Ocampo, E.A. Galapon, Characterizing multiple solutions to the time-energy canonical commutation relation via internal symmetries. Phys. Rev. A 81, 062105 (2010). https://doi.org/10.1103/PhysRevA.81.062105

    Article  ADS  Google Scholar 

  44. A.D. Villanueva, E.A. Galapon, Generalized crossing states in the interacting case: the uniform gravitational field. Phys. Rev. A 82, 052117 (2010). https://doi.org/10.1103/PhysRevA.82.052117

    Article  ADS  Google Scholar 

  45. P.C.M. Flores, E.A. Galapon, Quantum free-fall motion and quantum violation of the weak equivalence principle. Phys. Rev. A 99, 042113 (2019). https://doi.org/10.1103/PhysRevA.99.042113

    Article  ADS  Google Scholar 

  46. W. Pauli, Hanbuch der Physik, Vol. 1 (Springer-Verlag, 1926)

  47. E. A. Galapon, What could we have been missing while Pauli’s theorem was in force?, in Time and Matter, ed. by I.I. Bigi and M. Faessler (World Scientific Publishing Co., Singapore, 2006), 133–144. https://doi.org/0.1142/9789812774392_0010

  48. E.A. Galapon, Quantum wave-packet size effects on neutron time-of-flight spectroscopy. Phys. Rev. A 80, 030102 (2009). https://doi.org/10.1103/PhysRevA.80.030102

    Article  ADS  Google Scholar 

  49. E.A. Galapon, Only above barrier energy components contribute to barrier traversal time. Phys. Rev. Lett. 108, 170402 (2012). https://doi.org/10.1103/PhysRevLett.108.170402

    Article  ADS  Google Scholar 

  50. D.A.L. Pablico, E.A. Galapon, Quantum traversal time across a potential well. Phys. Rev. A. 101, 022103 (2020). https://doi.org/10.1103/PhysRevA.101.022103

    Article  ADS  MathSciNet  Google Scholar 

  51. D.L.B. Sombillo, E.A. Galapon, Quantum traversal time through a double barrier. Phys. Rev. A. 90, 032115 (2014). https://doi.org/10.1103/PhysRevA.90.032115

    Article  ADS  Google Scholar 

  52. M.J. Gotay, J. Grabowski, H.B. Grundling, An obstruction to quantizing compact symplectic manifolds. Proc. Am. Math. Soc. 128, 237–243 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  53. H.J. Groenewold, On the principles of elementary quantum mechanics. Physica 12, 405–460 (1946). https://doi.org/10.1016/S0031-8914(46)80059-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. D.L.B. Sombillo, E.A. Galapon, Quantum time of arrival Goursat problem. J. Math. Phys. 53, 043702 (2012). https://doi.org/10.1063/1.3699175

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. P. Buschm, M. Grabowski, P. Lahti, Operational Quantum Mechanics (Springer, Berlin. Heidelberg, 1995)

    Google Scholar 

  56. R. de la Madrid, The role of the rigged Hilbert space in quantum mechanics. Eur. J. Phys. 26, 287 (2005). https://doi.org/10.1088/0143-0807/26/2/008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. R. de la Madrid, Rigged Hilbert space approach to the Schrodinger equation. J. Phys. A Math. Gen. 35, 319–342 (2002). https://doi.org/10.1088/0305-4470/35/2/311

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. I.M. Gel’fand, G.E. Shilov, Generalized Functions, vol. 1 (Academic Press, London, 1964)

    MATH  Google Scholar 

  59. R.A.E. Farrales, H.B. Domingo, E.A. Galapon, Conjugates to one particle Hamiltonians in 1-dimension in differential form. Eur. Phys. J. Plus 137, 830 (2022). https://doi.org/10.1140/epjp/s13360-022-02956-5

    Article  Google Scholar 

  60. E.B. McBride, Obtaining Generating Functions (Springer-Verlag, Berlin Heidelberg, 1971)

    Book  MATH  Google Scholar 

  61. H.M. Srivastava, H.L. Manocha, A treatise on generating functions (E. Horwood; Halsted Press, New York, 1984)

    MATH  Google Scholar 

  62. P. Eckle, A.N. Pfeiffer, C. Cirelli, A. Staudte, R. Dorner, H.G. Muller, M. Buttiker, U. Keller, Attosecond ionization and tunneling delay time measurements in Helium. Science 322, 1525–1529 (2008). https://doi.org/10.1126/science.1163439

    Article  ADS  Google Scholar 

  63. A.N. Pfeiffer, C. Cirelli, M. Smolarski, R. Dorner, U. Keller, Timing the release in sequential double ionization. Nat. Phys. 7, 428–433 (2011). https://doi.org/10.1038/nphys1946RL

    Article  Google Scholar 

  64. U.S. Sainadh, H. Xu, X. Wang, A. Atia-Tul-Noor, W.C. Wallace, N. Douguet, A. Bray, I. Ivanov, K. Bartschat, A. Kheifets, R.T. Sang, I.V. Litvinyuk, Attosecond angular streaking and tunnelling time in atomic hydrogen. Nature 568, 75–77 (2019). https://doi.org/10.1038/s41586-019-1028-3

    Article  ADS  Google Scholar 

Download references

Acknowledgements

D.A.L. Pablico gratefully acknowledges the support of the Department of Science and Technology - Science Education Institute (DOST-SEI) through the Accelerated Science and Technology Human Resource Development Program (ASTHRDP) graduate scholarship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Galapon.

Appendix

Appendix

Derivation of the leading quantum correction

We consider the leading quantum correction \(T_1(u,v)\) given by (40) where the coefficients \(\alpha _{m,j}^{(1)}\) satisfy the recurrence relation given by (41). Direct substitution of (41) into (40) leads to

$$\begin{aligned} T_{1} (u,v) = & \sum\limits_{{m = 0}}^{\infty } {\sum\limits_{{j = 0}}^{\infty } {u^{m} } } v^{{2j}} \left( {\frac{\mu }{{2\hbar ^{2} }}} \right)^{{j - 1}} \frac{1}{{m \cdot 2j}}\sum\limits_{{l = 1}}^{{m - 1}} {\frac{{la_{l} }}{{2^{{l - 1}} }}} \alpha _{{m - l,j - 1}}^{{(1)}} \\ & + \sum\limits_{{m = 0}}^{\infty } {\sum\limits_{{j = 0}}^{\infty } {u^{m} } } v^{{2j}} \left( {\frac{\mu }{{2\hbar ^{2} }}} \right)^{{j - 1}} \frac{1}{{m \cdot 2j}}\sum\limits_{{l = 3}}^{{m + 1}} {\frac{{a_{l} }}{{2^{{l - 1}} }}} \left( {\begin{array}{*{20}c} l \\ 3 \\ \end{array} } \right)\alpha _{{m - l + 2,j - 2}}^{{(0)}} . \\ \end{aligned}$$
(134)

Performing series rearrangements, shifting of indices, and using the following relations

$$\begin{aligned} \int _{0}^{u} \textrm{d}s \, s^{m+l+1}=\frac{u^{m+l+2}}{m+l+2}, \qquad \int _{0}^{v} \textrm{d}w \, w^{2j+1}=\frac{v^{2j+2}}{2j+2}, \end{aligned}$$
(135)

Equation (134) simplifies to

$$\begin{aligned} \begin{aligned} T_1(u,v)=&\left( \frac{\mu }{2\hbar ^2}\right) \int _{0}^{u} \textrm{d}s \, V'\left( \frac{s}{2}\right) \int _{0}^{v} \textrm{d}w \, w \, T_1(s,w)+\frac{1}{24}\left( \frac{\mu }{2\hbar ^2}\right) \int _{0}^{u} ds \, V'''\left( \frac{s}{2}\right) \int _{0}^{v} \textrm{d}w \, w^3 \, T_0(s,w). \end{aligned} \end{aligned}$$
(136)

Taking \(\partial ^2/\partial u\partial v\) and using again the Leibniz integral rule given by (55), we get the following partial differential equation for \(T_1(u,v)\)

$$\begin{aligned} \frac{\partial ^2 T_1(u,v)}{\partial v \partial u}=\left( \frac{\mu }{2\hbar ^2}\right) V'\left( \frac{u}{2}\right) v\,T_1(u,v)+\frac{1}{24}\left( \frac{\mu }{2\hbar ^2}\right) v^3 \, V'''\left( \frac{u}{2}\right) T_0(u,v). \end{aligned}$$
(137)

It is straightforward to show the uniqueness of the solution \(T_1(u,v)\) with boundary conditions \(T_1(u,0)=T_1(0,v)=0\). Suppose that \(T_{1,a}(u,v)\) and \(T_{1,b}(u,v)\) both satisfy (137). Since the leading kernel factor \(T_0(u,v)\) is unique, it can be shown using the triangle inequality that \(|T_{1,a}(u,v)\) - \(T_{1,b}(u,v)|\rightarrow 0\) so that \(T_{1,a}(u,v)\) = \(T_{1,b}(u,v)\). Hence, \(T_1(u,v)\) is also unique. In fact, the uniqueness of \(T_1(u,v)\) is also guaranteed by the use of the method of successive approximations later.

Notice that (137) is dependent on \(T_1(s,w)\) and \(T_0(s,w)\) but the latter is just the leading kernel factor which is already known at this point. To solve for \(T_1(u,v)\), we apply again the method of successive approximations used in Sect. (3.1). Since we are solving for \(T_1(u,v)\), our zeroth-order approximation is the second term of (136), that is,

$$\begin{aligned} T_{1,0}(u,v)=\frac{1}{24}\left( \frac{\mu }{2\hbar ^2}\right) \int _{0}^{u} ds \, V'''\left( \frac{s}{2}\right) \int _{0}^{v} dw \, w^3 \, T_0(s,w). \end{aligned}$$
(138)

The nth-order approximation can then be determined from the following equation,

$$\begin{aligned} T_{1,n}(u,v)=T_{1,0}(u,v)+\left( \frac{\mu }{2\hbar ^2}\right) \int _{0}^{u} ds \, V'\left( \frac{s}{2}\right) \int _{0}^{v} dw \, w \, T_{1,n-1}(s,w). \end{aligned}$$
(139)

The solution \(T_1(u,v)\) of the integral equation in (136) is derived by taking the limit, \(T_1(u,v)=\lim _{n\rightarrow \infty }T_{1,n}(u,v)\).

From (139), we determine the first few iterates and also infer the general form for arbitrary n. For \(n=1\), we have

$$\begin{aligned} T_{1,1}(u,v)&=\frac{1}{24}\left( \frac{\mu }{2\hbar ^2}\right) \int _{0}^{u} \textrm{d}s \, V'''\left( \frac{s}{2}\right) \int _{0}^{v} \textrm{d}w \, w^3 \, T_0(s,w)\\&+\frac{1}{24}\left( \frac{\mu }{2\hbar ^2}\right) ^2\int _{0}^{u} \textrm{d}s \, V'''\left( \frac{s}{2}\right) \left[ V \left( \frac{u}{2}\right) -V \left( \frac{s}{2}\right) \right] \int _{0}^{v} \textrm{d}w \, w^3 (v^2-w^2)\, T_0(s,w). \end{aligned}$$
(140)

For \(n=2\), we have

$$\begin{aligned} T_{1,2}(u,v)&=\frac{1}{24}\left( \frac{\mu }{2\hbar ^2}\right) \int _{0}^{u} \textrm{d}s \, V'''\left( \frac{s}{2}\right) \int _{0}^{v} \textrm{d}w \, w^3 \, T_0(s,w)\\&+\frac{1}{24}\left( \frac{\mu }{2\hbar ^2}\right) ^2\int _{0}^{u} \textrm{d}s \, V'''\left( \frac{s}{2}\right) \left[ V \left( \frac{u}{2}\right) -V \left( \frac{s}{2}\right) \right] \int _{0}^{v} \textrm{d}w \, w^3 (v^2-w^2)\, T_0(s,w)\\&+\frac{1}{96}\left( \frac{\mu }{2\hbar ^2}\right) ^3\int _{0}^{u} \textrm{d}s V'''\left( \frac{s}{2}\right) \left[ V \left( \frac{u}{2}\right) -V \left( \frac{s}{2}\right) \right] ^2 \int _{0}^{v} \textrm{d}w \, w^3 (v^2-w^2)^2\, T_0(s,w). \end{aligned}$$
(141)

Doing the same calculations for \(n \ge 3\), we infer the following form of \(T_{1,n}(u,v)\) for arbitrary n

$$\begin{aligned} T_{1,n}(u,v)=&\left( \frac{\mu }{48\hbar ^2}\right) \int _{0}^{u} \textrm{d}s \, V'''\left( \frac{s}{2}\right) \int _{0}^{v} \textrm{d}w \, w^3 \, T_0(s,w) \\&\times \sum _{k=0}^{n}\frac{1}{(1)_k k!}\left( \frac{\mu }{2\hbar ^2}\right) ^k(v^2-w^2)^k \left[ V \left( \frac{u}{2}\right) -V \left( \frac{s}{2}\right) \right] ^k. \end{aligned}$$
(142)

Equation (142) is also proven formally via mathematical induction. Taking the limit \(n \rightarrow \infty\) and using the definition of the hypergeometric function given by (68), we find the leading kernel factor correction to be

$$\begin{aligned} \begin{aligned} T_1(u,v)&=\left( \frac{\mu }{48\hbar ^2}\right) \int _{0}^{u} \textrm{d}s \, V'''\left( \frac{s}{2}\right) \int _{0}^{v} \textrm{d}w \, w^3 \, T_0(s,w)\,\,{}_0F_1 \left( ;1;\left( \frac{\mu }{2\hbar ^2}\right) (v^2-w^2)\left[ V \left( \frac{u}{2}\right) -V \left( \frac{s}{2}\right) \right] \right) \end{aligned} \end{aligned}$$
(143)

in its integral form. Equation (143) clearly shows the dependence of the leading kernel correction \(T_1(u,v)\) on the potential V(q) and the leading kernel factor \(T_0(u,v)\) which is also dependent on the potential. It is straightforward to show that (91) satisfies the partial differential equation for the leading correction given by (137) subject to the boundary conditions \(T_1(u,0)=T_1(0,v)=0\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pablico, D.A.L., Galapon, E.A. Quantum corrections to the Weyl quantization of the classical time of arrival. Eur. Phys. J. Plus 138, 153 (2023). https://doi.org/10.1140/epjp/s13360-023-03774-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03774-z

Navigation