Skip to main content
Log in

Thin-shell wormhole under non-commutative geometry inspired Einstein–Gauss–Bonnet gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Einstein–Gauss–Bonnet gravity is a generalization of the general relativity to higher dimensions in which the first- and second-order terms correspond to general relativity and Einstein–Gauss–Bonnet gravity, respectively. We construct a new class of five-dimensional (5D) thin-shell wormholes by the ‘Cut–Paste’ technique from black holes in Einstein–Gauss–Bonnet gravity inspired by non-commutative geometry starting with a static spherically symmetric, Gaussian mass distribution as a source and for this structural form of the thin-shell wormhole we have explored several salient features of the solution, viz., pressure–density profile, equation of state, the nature of wormhole, total amount of exotic matter content at the shell. We have also analyzed the linearized stability of the constructed wormhole. From our study we can assert that our model is found to be plausible with reference to the other model of thin-shell wormhole available in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

There is no data associated in the manuscript from any source.

References

  1. A. Einstein, N. Rosen, Phys. Rev. 48, 73 (1935)

    Article  ADS  Google Scholar 

  2. R.W. Fuller, J.A. Wheeler, Phys. Rev. 128, 919 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  3. M.S. Morris, K.S. Throne, Am. J. Phys. 56, 39 (1988)

    ADS  Google Scholar 

  4. M. Visser, S. Kar, N. Dadhich, Phys. Rev. Lett. 90, 201102 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Visser, Nucl. Phys. B 328, 203 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  6. E. Poisson, M. Visser, Phys. Rev. D 52, 7318 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  7. G. Darmois, Mémorial des sciences mathématiques XXV, Fasticule XXV, (Gauthier-Villars, Paris, France, 1927), chap. V

  8. W. Israel, Nuovo Cimemto 44, 1 (1966). (Erratum: 48, 463 (1967))

    Article  ADS  Google Scholar 

  9. E.F. Eiroa, C. Simeone, Phys. Rev. D 71, 127501 (2005)

    Article  ADS  Google Scholar 

  10. E.F. Eiroa, C. Simeone, Phys. Rev. D 70, 044008 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Thibeault, C. Simeone, E.F. Eiroa, Gen. Relativ. Gravit. 38, 1593 (2006)

    Article  ADS  Google Scholar 

  12. C. Lanczos, Ann. Math. 39, 842 (1938)

    Article  MathSciNet  Google Scholar 

  13. D. Lovelock, J. Math. Phys. 12, 498 (1971)

    Article  ADS  Google Scholar 

  14. C. Callan, I. Klebanov, M. Perry, Nucl. Phys. B 278, 78 (1986)

    Article  ADS  Google Scholar 

  15. P. Candelas, G. Horowitz, A. Strominger, E. Witten, Nucl. Phys. B 258, 46 (1985)

    Article  ADS  Google Scholar 

  16. D. Gross, J. Sloan, Nucl. Phys. B 291, 41 (1987)

    Article  ADS  Google Scholar 

  17. M. Guica, L. Huang, W. Li, A. Strominger, J. High Energy Phys. 0610, 036 (2006)

    Article  ADS  Google Scholar 

  18. B.P. Abbott et al. (Virgo, LIGO Scientific Collaboration), Phys. Rev. Lett. 116, 061102 (2016)

  19. A. Kobakhidze, C. Lagger, A. Manning, Phys. Rev. D 94, 064033 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Saha, S. Gangopadhyay, Class. Quantum Grav. 33, 205006 (2016)

    Article  ADS  Google Scholar 

  21. H.S. Snyder, Phys. Rev. 71, 38 (1947)

    Article  ADS  MathSciNet  Google Scholar 

  22. H.S. Snyder, Phys. Rev. 72, 68 (1947)

    Article  ADS  MathSciNet  Google Scholar 

  23. C. A. Stephan, arXiv:1305.3066 (2013)

  24. P. Nicolini, A. Smailagic, E. Spalluci, Phys. Lett. B 632, 547 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  25. P. Nicolini, E. Spalluci, Class. Quantum Gravit. 27, 015010 (2010)

    Article  ADS  Google Scholar 

  26. F.S.N. Lobo, R. Garattini, J. High Energy Phys. 2013, 65 (2013)

    Article  Google Scholar 

  27. F. Rahaman et al., Phys. Rev. D 86, 106010 (2012)

    Article  ADS  Google Scholar 

  28. T.G. Rizzo, J. High Energy Phys. 0609, 021 (2006)

    Article  ADS  Google Scholar 

  29. E. Spallucci, A. Smailagic, P. Nicolini, Phys. Lett. B 670, 449 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  30. R. Garattini, F.S.N. Lobo, Phys. Lett. B 671, 146 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  31. F. Rahaman, Saibal Ray, G.S. Khadekar, P.K.F. Kuhfittig, I. Karar, Int. J. Theor. Phys. 54, 699 (2015)

    Article  Google Scholar 

  32. F. Rahaman, S. Karmakar, I. Karar, S. Ray, Phys. Lett. B 746, 73 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  33. P.K.F. Kuhfittig, V.D. Gladney, J. Appl. Math. Phys. 5, 574 (2017)

    Article  Google Scholar 

  34. M. Sharif, Shamaila Rani, Phys. Rev. D 88, 123501 (2013)

    Article  ADS  Google Scholar 

  35. Z. Hassan, G. Mustafa, P.K. Sahoo, Symmetry 13, 1260 (2021)

    Article  ADS  Google Scholar 

  36. M.F. Shamir, G. Mustafa, S. Waseem, Int. J. Geom. Methods Mod. 17, 2050129 (2020)

    Article  Google Scholar 

  37. D.G. Boulware, S. Deser, Phys. Rev. Lett. 55, 2656 (1985)

    Article  ADS  Google Scholar 

  38. J.T. Wheeler, Nucl. Phys. B 268, 737 (1986). (B273, 732 (1986))

    Article  ADS  Google Scholar 

  39. R.G. Cai, Phys. Lett. B 582, 237 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  40. C. Sahabandu, P. Suranyi, C. Vaz, L.C.R. Wijewardhana, Phys. Rev. D 73, 044009 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  41. S.G. Ghosh, D.W. Deshkar, Phys. Rev. D 77, 047504 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  42. D. Kastor, R.B. Mann, J. High Energy Phys. 0604, 048 (2006)

    Article  ADS  Google Scholar 

  43. E. Herscovich, M.G. Richarte, Phys. Lett. B 689, 192 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  44. S. Ansoldi, P. Nicolini, A. Smailagic, E. Spallucci, Phys. Lett. B 645, 261 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  45. K. Lanczos, Ann. Phys. 379, 518 (1924)

    Article  Google Scholar 

  46. N. Sen, Ann. Phys. 378, 365 (1924)

    Article  Google Scholar 

  47. G.P. Perry, R.B. Mann, Gen. Relativ. Gravit. 24, 305 (1992)

    Article  ADS  Google Scholar 

  48. P. Musgrave, K. Lake, Class. Quantum Grav. 13, 1885 (1996)

    Article  ADS  Google Scholar 

  49. F. Rahaman, M. Kalam, S. Chakraborty, Gen. Relativ. Gravit. 38, 1687 (2006)

    Article  ADS  Google Scholar 

  50. F. Rahaman, M. Kalam, K.A. Rahman, Acta Phys. Pol. B 40, 1575 (2009)

    ADS  Google Scholar 

  51. A.A. Usmani, Z. Hasan, F. Rahaman, Sk.. A. Rakib, S. Ray, P.K.F. Kuhfittig, Gen. Relativ. Gravit 42, 2901 (2010)

    Article  ADS  Google Scholar 

  52. F. Rahaman, K.A. Rahman, S.A. Rakib, P.K.F. Kuhfittig, Int. J. Theor. Phys. 49, 2364 (2010)

    Article  Google Scholar 

  53. G.A.S. Dias, J.P.S. Lemos, Phys. Rev. D 82, 084023 (2010)

    Article  ADS  Google Scholar 

  54. F. Rahaman, P.K.F. Kuhfittig, M. Kalam, A.A. Usmani, S. Ray, Class. Quantum Grav. 28, 155021 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

NR is thankful to UGC MANF(MANF-2018-19-WES-96213) for providing financial support. FR & MK would like to thank the authorities of the Inter-University Centre for Astronomy and Astrophysics, Pune, India for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Das.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, N., Kalam, M., Das, A. et al. Thin-shell wormhole under non-commutative geometry inspired Einstein–Gauss–Bonnet gravity. Eur. Phys. J. Plus 138, 146 (2023). https://doi.org/10.1140/epjp/s13360-023-03764-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03764-1

Navigation