Skip to main content
Log in

Thin-shell wormholes in Einstein–Maxwell theory with a Gauss–Bonnet term

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study five dimensional thin-shell wormholes in Einstein–Maxwell theory with a Gauss–Bonnet term. The linearized stability under radial perturbations and the amount of exotic matter are analyzed as a function of the parameters of the model. We find that the inclusion of the quadratic correction substantially widens the range of possible stable configurations, and besides it allows for a reduction of the exotic matter required to construct the wormholes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morris M.S., Thorne K.S. (1988). Am. J. Phys. 56: 395

    Article  ADS  MathSciNet  Google Scholar 

  2. Visser M. (1996): Lorentzian Wormholes. AIP Press, New York

    Google Scholar 

  3. Hochberg D., Visser M. (1997). Phys. Rev. D 56: 4745

    Article  ADS  MathSciNet  Google Scholar 

  4. Hochberg D., Visser M. (1998). Phys. Rev. Lett. 81: 746

    Article  ADS  MathSciNet  Google Scholar 

  5. Hochberg D., Visser M. (1998). Phys. Rev D 58: 044021

    Article  ADS  MathSciNet  Google Scholar 

  6. Visser M., Kar S., Dadhich N. (2003). Phys. Rev. Lett. 90: 201102

    Article  ADS  MathSciNet  Google Scholar 

  7. Barceló C., Visser M. (2002). Int. J. Mod. Phys. 11: 1553

    ADS  Google Scholar 

  8. Nandi K.K., Zhang Y.-Z., Vijaya Kumar K.B. (2004). Phys. Rev. D 70: 127503

    Article  ADS  Google Scholar 

  9. Roman, T.A.: gr-qc/0409090

  10. Eiroa E.F, Simeone C. (2005). Phys. Rev. D 71: 127501

    Article  ADS  Google Scholar 

  11. Nandi, K.K., Zhang, Y.-Z, Migranov, N.G.: gr-qc/0409053

  12. Visser M. (1989): Phys. Rev. D 39: R3182

    Article  ADS  MathSciNet  Google Scholar 

  13. Visser M. (1989): Nucl. Phys B328: 203

    Article  ADS  MathSciNet  Google Scholar 

  14. Sen N.(1924). Ann. Phys. (Leipzig) 73: 365

    ADS  Google Scholar 

  15. Lanczos K. (1924). Ann. Phys. (Leipzig) 74: 518

    ADS  Google Scholar 

  16. Darmois, G.: Mémorial des Sciences Mathématiques, Fascicule XXV ch V, Gauthier-Villars, Paris, (1927)

  17. Israel W. (1966). Nuovo Cimento 44B: 1

    Google Scholar 

  18. Israel W. (1967). Nuovo Cimento 48B: 463(E)

  19. Musgrave P., Lake K. (1996): Class. Quantum Grav. 13: 1885

    Article  ADS  MathSciNet  Google Scholar 

  20. Poisson E., Visser M. (1995). Phys. Rev. D 52: 7318

    Article  ADS  MathSciNet  Google Scholar 

  21. Eiroa E.F., Romero G.E. (2004). Gen. Relativ. Gravit. 36: 651

    Article  ADS  MathSciNet  Google Scholar 

  22. Lobo F.S.N., Crawford P. (2004). Class. Quantum Grav. 21: 391

    Article  ADS  MathSciNet  Google Scholar 

  23. Barceló C., Visser M. (2000). Nucl. Phys. B584: 415

    Article  ADS  Google Scholar 

  24. Ishak M., Lake K. (2002). Phys. Rev. D 65: 044011

    Article  ADS  MathSciNet  Google Scholar 

  25. Eiroa E.F., Simeone C. (2004). Phys. Rev. D 70: 044008

    Article  ADS  MathSciNet  Google Scholar 

  26. Lobo F.S.N., Crawford P. (2005). Class. Quantum Grav. 22: 4869

    Article  ADS  MathSciNet  Google Scholar 

  27. Lovelock D. (1971). J. Math. Phys. 12: 498

    Article  MathSciNet  Google Scholar 

  28. Fradkin E.S., Tseytlin A.A. (1985). Phys. Lett. B163: 12

    MathSciNet  Google Scholar 

  29. Zwiebach B. (1985). Phys. Lett B156: 315

    Article  ADS  Google Scholar 

  30. Bergshoeff E., Sezgin E., Pope C.N., Townsend P.K. (1987). Phys. Lett. B188: 70

    Article  ADS  Google Scholar 

  31. Metsaev R.R., Rahmanov M.A., Tseytlin A.A. (1987). Phys. Lett. B193: 207

    Article  ADS  MathSciNet  Google Scholar 

  32. Gross D.J., Sloan J.H. (1987). Nucl. Phys. B291: 41

    Article  ADS  MathSciNet  Google Scholar 

  33. Guica, M., Huang, L., Li, W., Strominger, A.: hep-th/0505188

  34. Bañados, M., Teitelboim, C., Zanelli, J.: Lovelock–Born–Infeld Theory of Gravity in Giambiagi, Festschrift, J.J., La Plata (edited by H. Falomir, R. Gamboa, P. Leal and F. Schaposnik, World Scientific, Singapore) (1990).

  35. Boulware D.G., Deser S. (1985). Phys. Rev. Lett. 55: 2656

    Article  ADS  Google Scholar 

  36. Wiltshire D.L. (1986). Phys. Lett. B169: 36

    Article  ADS  MathSciNet  Google Scholar 

  37. Wiltshire D.L. (1988). Phys. Rev. D 38: 2445

    Article  ADS  MathSciNet  Google Scholar 

  38. Aiello M., Ferraro R., Giribet G. (2004). Phys. Rev. D 70: 104014

    Article  ADS  MathSciNet  Google Scholar 

  39. Bhawal B., Kar S. (1992). Phys. Rev. D 46: 2464

    Article  ADS  MathSciNet  Google Scholar 

  40. Kar S., Sahdev D. (1996). Phys. Rev. D 53: 722

    Article  ADS  MathSciNet  Google Scholar 

  41. Cataldo M., Salgado P., Minning P. (2002). Phys. Rev. D 66: 124008

    Article  ADS  MathSciNet  Google Scholar 

  42. Debenedictis A., Das D. (2003). Nucl. Phys. B653: 279

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto F. Eiroa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thibeault, M., Simeone, C. & Eiroa, E.F. Thin-shell wormholes in Einstein–Maxwell theory with a Gauss–Bonnet term. Gen Relativ Gravit 38, 1593–1608 (2006). https://doi.org/10.1007/s10714-006-0324-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-006-0324-z

Keywords

Navigation