Skip to main content
Log in

Axion-fermion coupling and dyon charge as physical signatures of a space-time inner symmetry

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper we intend to complement the identification given in Kuerten and Fernandes-Silva (Mod Phys Lett A 33:1850092, 2018) which relates the axion to a metric spinor phase by means of Maxwell’s theory in the Infeld-van der Waerden’s \(\gamma \)-formalism. Thus, we obtain two alternative identifications: The first focuses on Dirac’s theory so that when obtaining an axion-like phase-fermion coupling, we achieve the first identification, and the last one investigates the phase behavior under Peccei–Quinn rotations in order to show that the phase changes as an axion pseudoparticle. With the formal aspects established, we also study the semiclassical fermion-photon system to demonstrate that the magnetic monopole current defined in Kuerten and Fernandes-Silva (Mod. Phys. Lett. A. 33:1850092) has dyon charge in flat universe and acquires a Witten effect form when there is a demand for chiral symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. A.M. Kuerten, A. Fernandes-Silva, Axion electrodynamics from Infeld-van der Waerden formalisms. Mod. Phys. Lett. A 33(16), 1850092 (2018). [arXiv:1711.09496 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. X.-L. Qi, S.-C. Zhang, The quantum spin Hall effect and topological insulators. Phys. Today 63(1), 33–38 (2010). [arXiv:1001.1602 [cond-mat.mtrl-sci]]

    Article  Google Scholar 

  3. I. Bakas, Solitons of axion-dilaton gravity. Phys. Rev. D 54, 6424 (1996). [hep-th/9605043]

    Article  ADS  MathSciNet  Google Scholar 

  4. J. Preskill, M. Wise, F. Wilczek, Cosmology of the invisible axion. Phys. Lett. B 120, 127 (1983)

    Article  ADS  Google Scholar 

  5. L.F. Abbott, P. Sikivie, A cosmological bound on the invisible axion. Phys. Lett. B 120, 133 (1983)

    Article  ADS  Google Scholar 

  6. M. Dine, W. Fischler, The not so harmless axion. Phys. Lett. B 120, 137 (1983)

    Article  ADS  Google Scholar 

  7. L. Visinelli, P. Gondolo, Axion cold dark matter revisited. J. Phys: Conf. Ser. 203, 012035 (2010). [arXiv:0910.3941 [astro-ph.CO]]

    Google Scholar 

  8. R.D. Peccei, H.R. Quinn, CP conservation in the presence of pseudoparticles. Phys. Rev. Lett. 38, 1440 (1977)

    Article  ADS  Google Scholar 

  9. R.D. Peccei, H.R. Quinn, Constraints imposed by CP conservation in the presence of pseudoparticles. Phys. Rev. D 16, 1791 (1977)

    Article  ADS  Google Scholar 

  10. F. Wilczek, Two applications of axion electrodynamics. Phys. Rev. Lett. 58, 1799 (1987)

    Article  ADS  Google Scholar 

  11. S.C. Tiwari, Axion electrodynamics in the duality perspective. Mod. Phys. Lett. A 30(40), 1550204 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. S.C. Tiwari, Phys. Essays 4, 212 (1991)

    Article  ADS  Google Scholar 

  13. S. C. Tiwari, Role of local duality invariance in axion electrodynamics of topological insulators, (2011) [arXiv:1109.0829 [physics.gen-ph]]

  14. S. C. Tiwari, On local duality invariance in electromagnetism, (2011) [arXiv:1110.5511 [physics.gen-ph]]

  15. A.M. Kuerten, J.G. Cardoso, Null Infeld-van der Waerden electromagnetic fields from geometric sources. Int. J. Theor. Phys. 50, 3007 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. B.L. Van der Waerden: Nachr. Akad. Wiss. Gottingen, Math.-Physik. Kl. 100(1929)

  17. L. Infeld, Physik. Z. 33, 475 (1932)

    Google Scholar 

  18. L. Infeld, B.L. van der Waerden, The wave equation of the electron in the general relativity theory. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1933, 380 (1933)

    MATH  Google Scholar 

  19. E. M. Corson, “Introduction to Tensors, Spinors and Relativistic Wave Equations,” Glasgow (1953)

  20. W.L. Bade, H. Jehle, An introduction to spinors. Rev. Mod. Phys. 25, 714 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. J.G. Cardoso, The Infeld-van der Waerden formalisms for general relativity. Czechoslov. J. Phys. 55(4), 401 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  22. J.G. Cardoso, The classical two-component spinor formalisms for general relativity I. Adv. Appl. Clifford Algebras 22, 955 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. J.G. Cardoso, The classical two-component spinor formalisms for general relativity II. Adv. Appl. Clifford Algebras 22, 985 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Afriat, Weyl’s gauge argument. Found. Phys. 43, 699–705 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. H. Weyl, Gravitation and the Electron. Proc. Natl. Acad. Sci. USA 15, 323 (1929)

    Article  ADS  MATH  Google Scholar 

  26. R. Penrose, Lecture in honour of leopold infeld: spinors in general relativity. Acta Phys. Polon. B 30, 2979 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  27. G.G. Raffelt, Axions: motivation, limits and searches. J. Phys. A 40, 6607 (2007). ([hep-ph/0611118])

    Article  ADS  MATH  Google Scholar 

  28. R. Penrose, W. Rindler, Spinors and Space-Time, vol. 1 (Cambridge University Press, Cambridge, 1984)

    Book  MATH  Google Scholar 

  29. M. Carmeli, S. Malin, Theory of Spinors, An Introduction (Word Scientific, Singapore, 2000)

    Book  MATH  Google Scholar 

  30. J.G. Cardoso, Wave equations for classical two-component Dirac fields in curved spacetimes without torsion. Class. Quant. Grav. 23, 4151 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. P. Adshead, E.I. Sfakianakis, Fermion production during and after axion inflation. JCAP. 021, 1511 (2015). arXiv: 1508.00891

  32. T. Toyoda, A unified theory of the fermi interaction. Nuc. Phys. 8, 661 (1958)

    Article  MATH  Google Scholar 

  33. D. Zwanziger, Quantum field theory of particles with both electric and magnetic charges. Phys. Rev. 176, 1489 (1968)

    Article  ADS  Google Scholar 

  34. J. Schwinger, Magnetic charge and quantum field theory. Phys. Rev. 144, 1087 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  35. E. Witten, Dyons of charge \(e\theta /2\pi \). Phys. Lett. B 86, 283 (1979)

    Article  ADS  Google Scholar 

  36. M. Bojowald, S. Brahma, U. Buyukcam, J. Guglielmon, M. van Kuppeveld, Small magnetic charges and monopoles in non-associative quantum mechanics. Phys. Rev. Lett. 121(20), 201602 (2018). [arXiv:1810.06540 [hep-th]]

    Article  ADS  Google Scholar 

  37. A. Addazi, A. Marcianò, Solar system and atomic stronger bounds on exotic dyonic matter and non-associative quantum mechanics. EPL 133, 30004 (2021)

    Article  ADS  Google Scholar 

  38. G. Raffelt, L. Stodolsky, Mixing of the photon with low mass particles. Phys. Rev. D 37, 1237 (1988)

    Article  ADS  Google Scholar 

  39. C. Dessert, D. Dunsky, B.R. Safdi, Upper limit on the axion-photon coupling from magnetic white dwarf polarization. Phys. Rev. D 105, 103034 (2022). [arXiv:2203.04319 [hep-ph]]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Martorano Kuerten.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuerten, A.M. Axion-fermion coupling and dyon charge as physical signatures of a space-time inner symmetry. Eur. Phys. J. Plus 138, 162 (2023). https://doi.org/10.1140/epjp/s13360-023-03758-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03758-z

Navigation