Skip to main content
Log in

The Infeld-van der Waerden formalisms for general relativity

  • Published:
Czechoslovak Journal of Physics Aims and scope

An Erratum to this article was published on 26 July 2012

Abstract

The elementary aspects of the spin-affine geometry borne by the Infeld-van der Waerden formalisms for classical general relativity are considered. It is explicitly shown that the symmetric parts of any admissible spin connexions behave covariantly under the action of the Weyl gauge group. The construction of a set of generalized covariant commutators provides a complete description of the corresponding curvature structures. The relevant computational procedures lead to a natural curvature splitting for each formalism which generally involves only the sum of purely gravitational and electromagnetic contributions. Under certain circumstances, the implementation of all commutators gives rise to a system of gauge-invariant wave equations for geometric photons and gravitons which carry prescribed index configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.L. Van der Waerden: Nachr. Akad. Wiss. Göttingen, Math.-Physik. Kl. (1929) 100.

  2. L. Infeld: Physik. Z. 33 (1932) 475.

    MATH  Google Scholar 

  3. L. Infeld and B.L. Van der Waerden: Sitzber. preuss. Akad. Wiss., Physik-math. Kl. (1933) 380.

  4. H. Weyl: Z. Physik 56 (1929) 330.

    Article  ADS  MATH  Google Scholar 

  5. J.A. Schouten J.A.: Z. Physik 84 (1933) 92.

    Article  ADS  Google Scholar 

  6. J.A. Schouten: Indagationes Math. 11 (1949) 178, 217, 336.

    Google Scholar 

  7. J.A. Schouten: Ricci Calculus. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1954.

    MATH  Google Scholar 

  8. R. Bach: Math. Z. 9 (1921) 110.

    Article  MathSciNet  MATH  Google Scholar 

  9. O. Laporte and G.E. Uhlenbeck: Phys. Rev. 37 (1931) 1380.

    Article  ADS  Google Scholar 

  10. H. Jehle: Phys. Rev. 75 (1949) 1609.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. W.L. Bade and H. Jehle: Rev. Mod. Phys. 25 (1953) 714.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. E.M. Corson: Introduction to Tensors, Spinors and Relativistic Wave Equations. Blackie, Glasgow, 1953.

    MATH  Google Scholar 

  13. P.G. Bergmann: Phys. Rev. 107 (1957) 624.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. J. Plebanski: Acta Phys. Polon. 27 (1965) 361.

    MathSciNet  Google Scholar 

  15. L. Witten: Phys. Rev. 113 (1959) 357.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. R. Penrose: Ann. Phys. (N.Y.) 10 (1960) 171.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. E. T. Newman and R. Penrose: J. Math. Phys. 3 (1962) 566.

    Article  MathSciNet  ADS  Google Scholar 

  18. R. Penrose and W. Rindler: Spinors and Space-Time, Vol. 1. Cambridge University Press, Cambridge, 1984.

    Book  MATH  Google Scholar 

  19. J.G. Cardoso: Nuovo Cimento B 111 (1996) 575.

    Article  MathSciNet  ADS  Google Scholar 

  20. A.Z. Petrov: Einstein Spaces, Pergamon Press, Oxford, 1969.

    MATH  Google Scholar 

  21. A. Papapetrou: Compt. Rend. Series A 272 (1971) 1537.

    MathSciNet  Google Scholar 

  22. G.A. Alekseev and V.I. Khlebnikov: Phys. El. Part. Atom. Nucl. 9 (1978) 790.

    Google Scholar 

  23. G. Ludwig: Clas. Quant. Gravity 3 (1986) 141. E. Schmutzer: Fortschr. Phys. 43 (1995) 669.

    Article  MathSciNet  ADS  Google Scholar 

  24. K. Hayashi and T. Samura: Mod. Phys. Lett. A 11 (1996) 1023.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. G. Ludwig and S.B. Edgon: Gen. Rel. Grav. 34 (2002) 807.

    Article  MATH  Google Scholar 

  26. J.A.V. Kroon: J. Math. Phys. 2 (2000) 898.

    Article  ADS  Google Scholar 

  27. E. Schrödinger: Space-Time Structure, Cambridge University Press, Cambridge, 1963.

    Google Scholar 

  28. L.D. Landau and L. Lifchitz: Théorie du Champ, Éd. MIR, Moscou, 1966.

    MATH  Google Scholar 

  29. W. Pauli: Relativity Theory, Pergamon Press, London, 1958.

    MATH  Google Scholar 

  30. M. Carmeli: Group Theory and General Relativity, McGraw-Hill, New York, 1977.

    MATH  Google Scholar 

  31. M. Carmeli and S. Malin: Theory of spinors, An Introduction, World Scientific, Singapore-New Jersey-London-Hong Kong, 2000.

    MATH  Google Scholar 

  32. R. Penrose and W. Rindler: Spinors and Space-Time, Vol. 2. Cambridge University Press, Cambridge, 1986.

    Book  Google Scholar 

  33. J.G. Cardoso: in Proc. Eighth Marcel Grossmann Meeting, Israel 1997 (Ed. Tsvi Piran), World Scientific, Singapore, 1997, Part A, p. 641.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1140/epjd/e2012-30278-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardoso, J.G. The Infeld-van der Waerden formalisms for general relativity. Czech J Phys 55, 401–462 (2005). https://doi.org/10.1007/s10582-005-0051-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10582-005-0051-9

Key words

Navigation