Skip to main content
Log in

Investigation of linear and third-order nonlinear optical properties of laser-dressed GaAs/GaAsSb/GaAs parabolic valence-band quantum wells

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this article, the linear and nonlinear intersubband optical properties of the valence-band electronic states were theoretically investigated in GaAs/GaAsSb/GaAs parabolic quantum well structures. The linear and the third-order nonlinear optical absorption coefficients and refractive index changes were examined as a function of the external electric field, half-width of the well, and the antimony content using density matrix formalism and the scheme of the iterative method in the framework of a two-level system. The numerical findings justified that the linear and the third-order nonlinear optical responses originated from the one-photon resonance processes. The resonance energy spectra indicated a redshift by increasing the dressing parameter of the laser field and a blueshift upon enhancing the electric field and the half-width of the well. The results revealed an enhancement in the amplitude of the optical characteristics with increasing the dressing parameter of the laser field, a decline in the electric field and an increment in the half-width of the well. Both linear and third-order nonlinear optical properties were maintained with variation of the antimony content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. X.-T. Wu, L. Chen, Structure-Property Relationships in Non-Linear Optical Crystals I: The UV-Vis Region (Springer, 2012)

  2. P.A. Franken, A.E. Hill, C.W. el Peters, G. Weinreich, Phys. Rev. Lett. 7, 118 (1961)

    Article  ADS  Google Scholar 

  3. A. Haghighatzadeh, B. Mazinani, Appl. Phys. B 126, 1 (2020)

    Article  Google Scholar 

  4. U. Gubler, C. Bosshard, Nat. Mater. 1, 209 (2002)

    Article  ADS  Google Scholar 

  5. E. Garmire, Opt. Express 21, 30532 (2013)

    Article  ADS  Google Scholar 

  6. A. Haghighatzadeh, B. Mazinani, M. Ostad, M. Shokouhimehr, J. Dutta, J. Mater. Sci. Mater. Electron. 32, 23385 (2021)

    Article  Google Scholar 

  7. M. Kiani, A. Haghighatzadeh, J. Inorg. Organomet. Polym. Mater. 31, 229 (2021)

    Article  Google Scholar 

  8. M. Ebrahimzadeh, A. Haghighatzadeh, J. Dutta, Opt. Laser Technol. 140, 107092 (2021)

    Article  Google Scholar 

  9. A.E. Willner, R.L. Byer, C.J. Chang-Hasnain, S.R. Forrest, H. Kressel, H. Kogelnik, G.J. Tearney, C.H. Townes, M.N. Zervas, Proc. IEEE 100, 1604 (2012)

    Article  Google Scholar 

  10. S. Manna, H. Huang, S.F.C. da Silva, C. Schimpf, M.B. Rota, B. Lehner, M. Reindl, R. Trotta, A. Rastelli, Appl. Surf. Sci. 532, 147360 (2020)

    Article  Google Scholar 

  11. M. Tshipa, Superlattices Microstruct. 159, 107031 (2021)

    Article  Google Scholar 

  12. S. Nasa, S.P. Purohit, Phys. E Low-Dimens. Syst. Nanostruct. 118, 113913 (2020)

    Article  Google Scholar 

  13. H.-G. Babin, N. Bart, M. Schmidt, N. Spitzer, A. D. Wieck, A. Ludwig, J. Cryst. Growth 591, 126713 (2022)

    Article  Google Scholar 

  14. W. Salhi, A. Samyh, A. Rajira, H. Akabli, A. Almaggoussi, A. Abounadi, Phys. B Condens. Matter 639, 413955 (2022)

    Article  Google Scholar 

  15. A. Haghighatzadeh, M. Kiani, B. Mazinani, J. Dutta, J. Mater. Sci. Mater. Electron. 31 (2020)

  16. D. Ren, L. Ahtapodov, J.S. Nilsen, J. Yang, A. Gustafsson, J. Huh, G.J. Conibeer, A.T.J. Van Helvoort, B.-O. Fimland, H. Weman, Nano Lett. 18, 2304 (2018)

    Article  ADS  Google Scholar 

  17. Z. Li, X. Yuan, L. Fu, K. Peng, F. Wang, X. Fu, P. Caroff, T.P. White, H.H. Tan, C. Jagadish, Nanotechnology 26, 445202 (2015)

    Article  ADS  Google Scholar 

  18. U. Aeberhard, A. Gonzalo, J.M. Ulloa, Appl. Phys. Lett. 112, 213904 (2018)

    Article  ADS  Google Scholar 

  19. S.P. Bremner, K. Ghosh, L. Nataraj, S.G. Cloutier, C.B. Honsberg, Thin Solid Films 519, 64 (2010)

    Article  ADS  Google Scholar 

  20. H.-T. Huang, W. Cao, H.-H. Lin, Y.-C. Chin, Solid State Electron. Lett. 1, 98 (2019)

    Article  Google Scholar 

  21. M. Motyka, M. Dyksik, K. Ryczko, R. Weih, M. Dallner, S. Höfling, M. Kamp, G. Sęk, J. Misiewicz, Appl. Phys. Lett. 108, 101905 (2016)

    Article  ADS  Google Scholar 

  22. Z. Jia, Q. Wang, X. Ren, X. Liu, Y. Wang, Y. Yan, S. Cai, X. Zhang, Y. Huang, Mater. Sci. Semicond. Process. 16, 1713 (2013)

    Article  Google Scholar 

  23. W.-P. Hong, S.-H. Park, Solid State Commun. 314, 113934 (2020)

    Article  Google Scholar 

  24. L. Li, D. Pan, Y. Xue, X. Wang, M. Lin, D. Su, Q. Zhang, X. Yu, H. So, D. Wei, Nano Lett. 17, 622 (2017)

    Article  ADS  Google Scholar 

  25. J.S. Hwang, J.T. Tsai, I.C. Su, H.C. Lin, Y.-T. Lu, P.C. Chiu, J.I. Chyi, Appl. Phys. Lett. 100, 222104 (2012)

    Article  ADS  Google Scholar 

  26. A.J. McIntyre, B.J. Sherin, Solid State Technol. 32, 119 (1989)

    Article  Google Scholar 

  27. E. Kasapoglu, S. Sakiroglu, H. Sari, I. Sӧkmen, C.A. Duque, Heliyon 5, e02022 (2019)

    Article  Google Scholar 

  28. N.D. Hien, C.A. Duque, E. Feddi, N.V. Hieu, H.D. Trien, L.T.T. Phuong, B.D. Hoi, L.T. Hoa, C.V. Nguyen, N.N. Hieu, Thin Solid Films 682, 10 (2019)

    Article  ADS  Google Scholar 

  29. H. Althib, Results Phys. 22, 103943 (2021)

    Article  Google Scholar 

  30. N.D. Hien, L. Dinh, N.T.T. Anh, J. Phys. Chem. Solids 145, 109501 (2020)

    Article  Google Scholar 

  31. Q.-P. Tran, J.-S. Fang, T.-S. Chin, Mater. Sci. Semicond. Process. 40, 664 (2015)

    Article  Google Scholar 

  32. H.V. Phuc, D.Q. Khoa, N. Van Hieu, N.N. Hieu, Optik (Stuttg). 127, 10519 (2016)

    Article  ADS  Google Scholar 

  33. A. K. Sinha, R. Sooraj, in 2019 Work. Recent Adv. Photonics (IEEE, 2019), pp. 1–3

  34. E. Feddi, A. Talbi, M.E. Mora-Ramos, M. El Haouari, F. Dujardin, C.A. Duque, Phys. B Condens. Matter 524, 64 (2017)

    Article  ADS  Google Scholar 

  35. N. Sahoo, A.K. Sahu, S.K. Palo, Phys. B Condens. Matter 608, 412798 (2021)

    Article  Google Scholar 

  36. E.S.N. Kasapoglu, I. Sӧkmen, Phys. Lett. A 372, 56 (2007)

    Article  ADS  Google Scholar 

  37. E.S.N. Kasapoglu, U. Yesilgul, F.A.T.H. Ungan, I. Sökmen, H.N. Sari, Opt. Mater. (Amst). 64, 82 (2017)

    Article  ADS  Google Scholar 

  38. H.N. Sari, F.A.T.H. Ungan, S. Sakiroglu, U. Yesilgul, I. Skmen, Optik (Stuttg). 162, 76 (2018)

    Article  ADS  Google Scholar 

  39. K. Li, S. Zhu, S. Dai, Q.G. Yang, H. Yin, Z. Li, Z. Chen, J. Lumin. 239, 118364 (2021)

    Article  Google Scholar 

  40. A.-N. Aishah, H. Dakhlaoui, T. Ghrib, B.M. Wong, Phys. B Condens. Matter 635, 413838 (2022)

    Article  Google Scholar 

  41. C. Wu, J. You, J. Lao, K. Guo, Phys. Lett. A 432, 128003 (2022)

    Article  Google Scholar 

  42. Y.G. Sadofyev, N. Samal, B.A. Andreev, V.I. Gavrilenko, S.V. Morozov, A.G. Spivakov, A.N. Yablonsky, Semiconductors 44, 405 (2010)

    Article  ADS  Google Scholar 

  43. F.A.T.H. Ungan, U. Yesilgul, S. Sakiroglu, E.S.N. Kasapoglu, H.N. Sari, I. Sӧkmen, J. Lumin. 143, 75 (2013)

    Article  Google Scholar 

  44. S. Maleki, A. Haghighatzadeh, A. Attarzadeh, and A. Radu, Phys. E Low-Dimensional Syst. Nanostructures 115302 (2022).

  45. Z. N. Chaleshtari, A. Haghighatzadeh, and A. Attarzadeh, Solid State Commun. 114870 (2022).

  46. E.S.N. Kasapoglu, F. Ungan, U. Yesilgul, Opt. Quantum Electron. 49, 175 (2017)

    Article  Google Scholar 

  47. U. Yesilgul, F. Ungan, S.L. Sakiroglu, M.E. Mora-Ramos, C.A. Duque, E.S.N. Kasapoglu, H. Sar, I. Sӧkmen, J. Lumin. 145, 379 (2014)

    Article  Google Scholar 

  48. E.S.N. Kasapoglu, H. Sari, I. Sӧkmen, J.A. Vinasco, D. Laroze, C.A. Duque, Phys. E Low-Dimensional Syst. Nanostructures 126, 114461 (2021)

    Article  Google Scholar 

  49. M. Levinshtein, Handbook Series on Semiconductor Parameters (World Scientific, 1997).

  50. G. Liu, S.-L. Chuang, Phys. Rev. B 65, 165220 (2002)

    Article  ADS  Google Scholar 

  51. E.B. Al, E. Kasapoglu, H.N. Sari, I. Sӧkmen, Phys. B Condens. Matter 613, 412874 (2021)

    Article  Google Scholar 

  52. S.L. Sakiroglu, E.S.N. Kasapoglu, R.L. Restrepo, C.A. Duque, I. Sӧkmen, Phys. Status Solidi 254, 1600457 (2017)

    Article  Google Scholar 

  53. F.A.T.H. Ungan, Martí, J.C. Nez-Orozco, R.L. Restrepo, M.E. Mora-Ramos, Optik (Stuttg) 185, 881 (2019)

Download references

Acknowledgements

The current study was partially supported by Ahvaz Branch of Islamic Azad University. The authors would like to thank the Research Council for their generous support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azadeh Haghighatzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi Chaleshtari, Z., Haghighatzadeh, A. & Attarzadeh, A. Investigation of linear and third-order nonlinear optical properties of laser-dressed GaAs/GaAsSb/GaAs parabolic valence-band quantum wells. Eur. Phys. J. Plus 138, 139 (2023). https://doi.org/10.1140/epjp/s13360-023-03756-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03756-1

Navigation