Skip to main content
Log in

A study on hyperelastic models for micromorphic solids

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper presents two hyperelastic models for the micromorphic hyperelasticity which can be efficiently utilized for materials with high dependence on the microdeformation gradient. To this end, two new microdeformation gradient-based strain measures are introduced and used in hyperelastic formulation. The developed formulation for the micromorphic hyperelasticity makes it possible to define hyperelastic functions whose dependency on the microdeformation gradient can be clearly discussed. Also, based on the proposed formulation, any kind of hyperelastic models can be formulated using the defined strain measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as it describes entirely theoretical research.

Abbreviations

\(\nabla_{x} ,\nabla_{X}\) :

Del operator in current and reference coordinate systems

\(\mathbf{x},\mathbf{X}\) :

Macroelement position vector in current and reference configurations

\(\widetilde{\mathbf{x}},\widetilde{\mathbf{X}}\) :

Microelement position vector in current and reference configurations

\({\varvec{\upxi}},{\varvec{\Xi}}\) :

Microelement position vector with respect to macroelement in current and reference configurations

\(\mathbf{F},{\varvec{\upchi}}\) :

Deformation gradient tensor and microdeformation tensor

\(\mathbf{C}\) :

Symmetric second-rank strain measure tensor known as the right Cauchy–Green deformation tensor

\({\varvec{\Upsilon}}\) :

Symmetric second-rank strain measure tensors indicating microdeformation

\(\widehat{{\varvec{\Gamma}}},{\varvec{\Gamma}}\) :

Two third-rank strain measure tensors

\({\varvec{\Lambda}},\mathbf{K}\) :

New second-rank strain measure tensor

\(\widetilde{\mathbf{t}},\mathbf{n}\) :

Traction vector and its normal vector

\({\varvec{\upsigma}},\mathbf{s},{\varvec{\upmu}}\) :

The Cauchy stress tensor, second-rank stress tensor and stress moment tensor

\( {\mathbf{t}} = {\varvec{\upsigma}} - {\mathbf{s}} \) :

Microstress tensor

\( \psi \) :

Helmholtz free energy

\( \prod \) :

Potential energy

\(I_{1}^{{\mathbf{A}}} ,I_{2}^{{\mathbf{A}}} ,I_{3}^{{\mathbf{A}}}\) :

Principal invariants of any second-rank tensor \(\mathbf{A}\)

References

  1. P. Duhem, Le potentiel thermodynamique et la pression hydrostatique. Annales scientifiques de l’Ecole Normale Superieure 10, 183–230 (1893)

    Article  MATH  Google Scholar 

  2. E. Cosserat, F. Cosserat, Sur la mecanique generale, Gauthier-Villars, (1907).

  3. E. Cosserat, F. Cosserat, Sur la theorie des corps minces. Compt. Rend 146, 169–172 (1908)

    MATH  Google Scholar 

  4. E. Cosserat, F. Cosserat, Theorie des corps deformables, A. Hermann et fils, (1909).

  5. J. Ericksen, C. Truesdell, Exact theory of stress and strain in rods and shells. Arch. Ration. Mech. Anal. 1(1), 295–323 (1957)

    Article  MATH  Google Scholar 

  6. R. Toupin, Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385–414 (1962)

    Article  MATH  Google Scholar 

  7. R. Mindlin, H. Tiersten, Effects of couple-stresses in linear elasticity Tech. rep. (Columbia Univ, New York, 1962)

    Google Scholar 

  8. R. D. Mindlin, Microstructure in linear elasticity, Tech. rep., Columbia Univ New York Dept of Civil Engineering and Engineering Mechanics (1963)

  9. A.E. Green, P.M. Naghdi, W. Wainwright, A general theory of a cosserat surface. Arch. Ration. Mech. Anal. 20(4), 287–308 (1965)

    Article  Google Scholar 

  10. M. Epstein, M. de Leon, Geometrical theory of uniform Cosserat media. J. Geom. Phys. 26(1–2), 127–170 (1998)

    Article  ADS  MATH  Google Scholar 

  11. C. Sansour, H. Bednarczyk, The Cosserat surface as a shell model, theory and finite-element formulation. Comput. Methods Appl. Mech. Eng. 120(1–2), 1–32 (1995)

    Article  ADS  MATH  Google Scholar 

  12. E. Providas, M. Kattis, Finite element method in plane Cosserat elasticity. Comput. Struct. 80(27–30), 2059–2069 (2002)

    Article  Google Scholar 

  13. E. Sharbati, R. Naghdabadi, Computational aspects of the Cosserat finite element analysis of localization phenomena. Comput. Mater. Sci. 38(2), 303–315 (2006)

    Article  Google Scholar 

  14. A. Riahi, J.H. Curran, Full 3d finite element Cosserat formulation with application in layered structures. Appl. Math. Model. 33(8), 3450–3464 (2009)

    Article  MATH  Google Scholar 

  15. M. Godio, I. Stefanou, K. Sab, J. Sulem, Dynamic finite element formulation for Cosserat elastic plates. Int. J. Numer. Meth. Eng. 101(13), 992–1018 (2015)

    Article  MATH  Google Scholar 

  16. N. Fantuzzi, L. Leonetti, P. Trovalusci, F. Tornabene, Some novel numerical applications of Cosserat continua. Int. J. Comput. Methods 15(06), 1850054 (2018)

    Article  MATH  Google Scholar 

  17. A. Arora, A. Kumar, P. Steinmann, A computational approach to obtain nonlinearly elastic constitutive relations of special Cosserat rods. Comput. Methods Appl. Mech. Eng. 350, 295–314 (2019)

    Article  ADS  MATH  Google Scholar 

  18. J.L. Ericksen, Conservation laws for liquid crystals. Trans. Soc. Rheol. 5(1), 23–34 (1961)

    Article  Google Scholar 

  19. R. A. Toupin, Theories of elasticity with couple-stress (1964).

  20. F. Yang, A. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    Article  MATH  Google Scholar 

  21. A.R. Hadjesfandiari, G.F. Dargush, Couple stress theory for solids. Int. J. Solids Struct. 48(18), 2496–2510 (2011)

    Article  Google Scholar 

  22. G.C. Tsiatas, A new Kirchhoff plate model based on a modified couple stress theory. Int. J. Solids Struct. 46(13), 2757–2764 (2009)

    Article  MATH  Google Scholar 

  23. H. Ma, X.-L. Gao, J. Reddy, A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220(1), 217–235 (2011)

    Article  MATH  Google Scholar 

  24. R. Ansari, M.F. Shojaei, V. Mohammadi, R. Gholami, M. Darabi, Nonlinear vibrations of functionally graded Mindlin microplates based on the modified couple stress theory. Compos. Struct. 114, 124–134 (2014)

    Article  Google Scholar 

  25. A. Green, R. Rivlin, Simple force and stress multipoles. Arch. Ration. Mech. Anal. 16(5), 325–353 (1964)

    Article  MATH  Google Scholar 

  26. A. Green, R. Rivlin, Multipolar continuum mechanics, Archive for Rational Mechanics and Analysis 17 (1964).

  27. A. E. Green, R. S. Rivlin, Multipolar continuum mechanics: functional theory, In: Proceedings of the Royal Society of London. Series A Mathematical and Physical Sciences 284, 303–324 (1965)

  28. A. E. Green, R. S. Rivlin, The relation between director and multipolar theories in continuum mechanics. Zeitschrift f¨ur angewandte Mathematik und Physik ZAMP 18, 208–218 (1967)

  29. A. Green, Micro-materials and multipolar continuum mechanics. Int. J. Eng. Sci. 3(5), 533–537 (1965)

    Article  Google Scholar 

  30. A.E. Green, P.M. Naghdi, R.S. Rivlin, Directors and multipolar displacements in continuum mechanics. Int. J. Eng. Sci. 2(6), 611–620 (1965)

    Article  MATH  Google Scholar 

  31. A.E. Green, P.M. Naghdi, Plasticity theory and multipolar continuum mechanics. Mathematika 12(1), 21–26 (1965)

    Article  Google Scholar 

  32. A.C. Eringen, E.S. Suhubi, Nonlinear theory of simple micro-elastic solids-I. Int. J. Eng. Sci. 2, 189–203 (1964)

    Article  MATH  Google Scholar 

  33. E.S. Suhubi, A.C. Eringen, Nonlinear theory of micro-elastic solids-II. Int. J. Eng. Sci. 2, 389–404 (1964)

    Article  MATH  Google Scholar 

  34. A.C. Eringen, Simple microfluids. Int. J. Eng. Sci. 2(2), 205–217 (1964)

    Article  MATH  Google Scholar 

  35. A. C. Eringen, Mechanics of micromorphic materials, in: Applied Mechanics, Springer, pp. 131–138. (1966)

  36. A. C. Eringen, Mechanics of micromorphic continua, in: Mechanics of generalized continua, Springer, pp. 18–35 (1968)

  37. A.C. Bringen, Balance laws of micromorphic mechanics. Int. J. Eng. Sci. 8(10), 819–828 (1970)

    Article  MATH  Google Scholar 

  38. A.C. Eringen, Theory of micromorphic materials with memory. Int. J. Eng. Sci. 10(7), 623–641 (1972)

    Article  MATH  Google Scholar 

  39. A.C. Eringen, Balance laws of micromorphic continua revisited. Int. J. Eng. Sci. 30(6), 805–810 (1992)

    Article  MATH  Google Scholar 

  40. A.C. Eringen, Continuum theory of micromorphic electromagnetic thermoelastic solids. Int. J. Eng. Sci. 41(7), 653–665 (2003)

    Article  MATH  Google Scholar 

  41. A. C. Eringen, Linear theory of micropolar elasticity, Journal of Mathematics and Mechanics 909–923 (1966).

  42. A. C. Eringen, Theory of micropolar fluids, Journal of Mathematics and Mechanics (1966) 1–18.

  43. A. C. Eringen, Theory of micropolar plates, Zeitschrift f¨ur angewandte Mathematik und Physik ZAMP 18(1) 12–30 (1967).

  44. A.C. Eringen, Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28(12), 1291–1301 (1990)

    Article  MATH  Google Scholar 

  45. A.C. Eringen, Theory of thermo-microstretch fluids and bubbly liquids. Int. J. Eng. Sci. 28(2), 133–143 (1990)

    Article  MATH  Google Scholar 

  46. A.C. Eringen, Continuum theory of microstretch liquid crystals. J. Math. Phys. 33(12), 4078–4086 (1992)

    Article  ADS  MATH  Google Scholar 

  47. A. C. Eringen, Microcontinuum field theories: I. Foundations and Solids, Springer Science & Business Media, (1999).

  48. A. C. Eringen, Microcontinuum field theories: II. Fluent media, Vol. 2, Springer Science & Business Media, (2001).

  49. S. Forest, R. Sievert, Nonlinear microstrain theories. Int. J. Solids Struct. 43, 7224–7245 (2006)

    Article  MATH  Google Scholar 

  50. V. Isbuga, R.A. Regueiro, Three-dimensional finite element analysis of finite deformation micromorphic linear isotropic elasticity. Int. J. Eng. Sci. 49, 1326–1336 (2011)

    Article  MATH  Google Scholar 

  51. R. Ansari, M. Bazdid-Vahdati, A.H. Shakouri, A. Norouzzadeh, H. Rouhi, Micromorphic prism element. Math. Mech. Solids 22, 1438–1461 (2017)

    Article  MATH  Google Scholar 

  52. M. Bazdid-Vahdati, M.F. Oskouie, R. Ansari, H. Rouhi, Finite element analysis of micromorphic and micropolar continua based on two-dimensional elasticity. Math. Mech. Solids 24, 1893–1907 (2018)

    Article  MATH  Google Scholar 

  53. M.F. Oskouie, M. Bazdid-Vahdati, R. Ansari, H. Rouhi, Finite element modeling of micromorphic continua in the context of three-dimensional elasticity. Continuum Mech. Thermodyn. 32, 99–110 (2019)

    Article  ADS  MATH  Google Scholar 

  54. A. Norouzzadeh, R. Ansari, M. Darvizeh, Large elastic deformation of micromorphic shells. part i: Variational formulation, Mathematics and Mechanics of Solids 24, 3920 – 3956 (2019)

  55. R. Ansari, A. Norouzzadeh, H. Rouhi, Micromorphic continuum theory: Finite element analysis of 3d elasticity with applications in beam- and plate-type structures (2021).

  56. S. Forest. Continuum thermomechanics of nonlinear micromorphic, strain and stress gradient media. Philosophical Transactions A, In press. ffhal-02328931 media. Philosophical Transactions A, In press. ffhal-02328931

  57. S. Forest, K. Sab. Finite-deformation second-order micromorphic theory and its relations to strain and stress gradient models. Math. Mech. Solids, SAGE Public. 25 (7), pp.1429–1449 (2020)

  58. C.B. Hirschberger, E. Kuhl, P. Steinmann, On deformational and configurational mechanics of micromorphic hyperelasticity – theory and computation. Comput. Methods Appl. Mech. Eng. 196, 4027–4044 (2007)

    Article  ADS  MATH  Google Scholar 

  59. T. Leismann, R. Mahnken, Comparison of hyperelastic micromorphic, micropolar and microstrain continua. Int. J. Non-Linear Mech. 77, 115–127 (2015)

    Article  ADS  Google Scholar 

  60. R. Hassani, R. Ansari, H. Rouhi, An efficient numerical approach to the micromorphic hyperelasticity. Continuum Mech. Thermodyn. 32, 1011–1036 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ansari.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazdid-Vahdati, M., Ansari, R. & Darvizeh, A. A study on hyperelastic models for micromorphic solids. Eur. Phys. J. Plus 138, 87 (2023). https://doi.org/10.1140/epjp/s13360-022-03637-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03637-z

Navigation