Skip to main content

Advertisement

Log in

Investigating dark energy by electromagnetic frequency shifts II: the Pantheon+ sample

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Following results presented in Spallicci et al. (Eur Phys J Plus 137, 2022) by the same authors, we investigate the observed red shift z, working under the hypothesis that it might be composed by the expansion red shift \(z_{\mathrm{C}}\) and an additional frequency shift \(z_{\mathrm{S}}\), towards the red or the blue, due to Extended Theories of Electromagnetism (ETE). We have tested this prediction considering the novel Pantheon+ Catalogue, composed by 1701 light curves collected by 1550 SNe Ia, and 16 BAO data, for different cosmological models characterised by the absence of a dark energy component. In particular, we shall derive which values of \(z_{\mathrm{S}}\) match the observations, comparing the new results with the ones obtained considering the older Pantheon Catalogue. We find interesting differences in the resulting \(z_{\mathrm{S}}\) distributions, highlighted in the text. Later, we also add a discussion regarding Extended Theories of Gravity and how to incorporate them in our methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data analyzed in this work are available at https://github.com/PantheonPlusSH0ES/DataRelease for the Pantheon+ sample [75], and in [70,71,72,73,74] for the BAO set.]

References

  1. A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P.M. Garnavich, R.L. Gilliland, C.J. Hogan, S. Jha, R.P. Kirshner et al., Astron. J. 116, 1009 (1998). arXiv:astro-ph/9805201

    Article  ADS  Google Scholar 

  2. A.G. Riess, L.-G. Strolger, J. Tonry, S. Casertano, H.C. Ferguson, B. Mobasher, P. Challis, A.V. Filippenko, S. Jha, W. Li et al., Astrophys. J. 607, 665 (2004). arXiv:astro-ph/0402512

    Article  ADS  Google Scholar 

  3. S. Perlmutter, G. Aldering, G. Goldhaber, R.A. Knop, P. Nugent, P.G. Castro, S. Deustua, S. Fabbro, A. Goobar, D.E. Groom et al., Astrophys. J. 517, 565 (1999). arXiv:astro-ph/9812133

    Article  ADS  Google Scholar 

  4. N.A. Bahcall, J.P. Ostriker, S. Perlmutter, P.J. Steinhardt, Science 284, 1481 (1999). arXiv:astro-ph/9906463

    Article  ADS  Google Scholar 

  5. D. N. Spergel, L. Verde, H. V. Peiris, E. Komatsu, M. R. Nolta, C. L. Bennett, M. Halpern, G. H. N. Jarosik, A. Kogut, M. Limon et al., Astrophys. J. Suppl. Ser. 148, 175 (2003). arXiv:astro-ph/0302209

    Article  ADS  Google Scholar 

  6. C. Schimd, I. Tereno, J.-P. Uzan, Y. Mellier, L. van Waerbeke, E. Semboloni, H. Hoekstra, L. Fu, A. Riazuelo, Astron. Astrophys. 463, 405 (2006). arXiv:astro-ph/0603158

    Article  ADS  Google Scholar 

  7. P. McDonald, U. Seljak, S. Burles, D.J. Schlegel, D.H. Weinberg, R. Cen, D. Shih, J. Schaye, D.P. Schneider, N.A. Bahcall et al., Astrophys. J. Suppl. Ser. 163, 80 (2006). arXiv:astro-ph/0405013

    Article  ADS  Google Scholar 

  8. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys. Space Sci. 342, 155 (2012). arXiv:1205.3421 [gr-qc]

    Article  ADS  Google Scholar 

  9. A. Joyce, B. Jain, J. Khoury, M. Trodden, Phys. Rep. 568, 1 (2015). arXiv:1407.0059 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  10. P. Salucci, G. Esposito, G. Lambiase, E. Battista, M. Benetti, D. Bini, L. Boco, G. Sharma, V. Bozza, L. Buoninfante et al., Front. Phys. 8, 1 (2021). arXiv:2011.09278 [gr-qc]

    Article  Google Scholar 

  11. F. Zwicky, Helv. Phys. Acta 6, 110 (1933)

    ADS  Google Scholar 

  12. H.W. Babcock, Lick Obs. Bull. 498, 41 (1939)

    ADS  Google Scholar 

  13. V.C. Rubin, V.K. Ford, Astrophys. J. 159, 379 (1970)

    Article  ADS  Google Scholar 

  14. R. Tripp, Astron. Astrophys. 331, 815 (1998)

    ADS  Google Scholar 

  15. C. Pigozzo, M.A. Dantas, S. Carneiro, J.S. Alcaniz, J. Cosm. Astropart. Phys. 8, 022 (2011). arXiv:1007.5290 [astro-ph.CO]

    Article  ADS  Google Scholar 

  16. M. López-Corredoira, Found. Phys. 47, 711 (2017). arXiv:1701.08720 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  17. E. Aprile, J. Aalbers, F. Agostini, M. Alfonsi, F.D. Amaro, M. Anthony, B. Antunes, F. Arneodo, M. Balata, P. Barrow et al., Eur. Phys. J. C 77, 1–23 (2017). arXiv:1705.06655

    Article  Google Scholar 

  18. R.I. Workman and the Particle Data Group, Progr. Theor. Exp. Phys. p. 083C01 (2022)

  19. S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011). arXiv:1108.6266 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  20. H.E.S. Velten, R.F. vom Marttens, W. Zimdahl, Eur. Phys. J. C 74, 1–18 (2014). arXiv:1410.2509

    Article  Google Scholar 

  21. S. Capozziello, M. Benetti, A.D.A.M. Spallicci, Found. Phys. 50, 893 (2020). arXiv:2007.00462 [gr-qc]

    Article  ADS  Google Scholar 

  22. A.D.A.M. Spallicci, M. Benetti, S. Capozziello, Found. Phys. 52, 23 (2022). arXiv:2112.07359 [physics.gen-ph]

    Article  ADS  Google Scholar 

  23. S. Capozziello and V. Faraoni, Beyond Einstein gravity, vol. 170 of Fundamental Theories of Physics (Springer, Dordrecht, 2011), ISBN 978-94-007-3402-9

  24. L. Blanchet, A. Spallicci, B. Whiting, eds., Mass and motion in general relativity, vol. 162 of Fundamental Theories of Physics (Springer, Dordrecht, 2011), ISBN 978-90-481-3014-6

  25. A.V. Astashenok, S. Capozziello, S.D. Odintsov, J. Cosm. Astropart. Phys. 12, 040 (2013). arXiv:1309.1978 [gr-qc]

    Article  ADS  Google Scholar 

  26. A.V. Astashenok, S. Capozziello, S.D. Odintsov, Phys. Rev. D 89, 103509 (2014). arXiv:1401.4546 [gr-qc]

    Article  ADS  Google Scholar 

  27. A.V. Astashenok, S. Capozziello, S.D. Odintsov, Astrophys. Space Sci. 355, 333 (2014). arXiv:1405.6663 [gr-qc]

    Article  ADS  Google Scholar 

  28. A.V. Astashenok, S. Capozziello, S.D. Odintsov, Phys. Lett. B 742, 160 (2015). arXiv:1412.5453 [gr-qc]

    Article  ADS  Google Scholar 

  29. A.V. Astashenok, S. Capozziello, S.D. Odintsov, J. Cosm. Astropart. Phys. 1, 001 (2015). arXiv:1408.3856 [gr-qc]

    Article  ADS  Google Scholar 

  30. A. Wojnar, Eur. Phys. J. C 79, 51 (2019). arXiv:1808.04188 [gr-qc]

    Article  ADS  Google Scholar 

  31. G.J. Olmo, D. Rubiera-Garcia, A. Wojnar, Phys. Rep. 876, 1 (2020). arXiv:1912.05202 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  32. P. Feola, X.J. Forteza, S. Capozziello, R. Cianci, S. Vignolo, Phys. Rev. D 101, 044037 (2020). arXiv:1909.08847 [astro-ph.HE]

    Article  ADS  MathSciNet  Google Scholar 

  33. S. Bahamonde, C.G. Böhmer, S. Carloni, E.J. Copeland, W. Fang, N. Tamanini, Phys. Rep. 775, 1 (2018). arXiv:1712.03107 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  34. S. Carloni, R. Cianci, P. Feola, E.E. Piedipalumbo, S. Vignolo, J. Cosm. Astropart. Phys. 9, 014 (2019). arXiv:1811.10300 [astro-ph.CO]

    Article  ADS  Google Scholar 

  35. M.G. Dainotti, B. De Simone, T. Schiavone, G. Montani, E. Rinaldi, G. Lambiase, Astropart. J. 912, 150 (2021). arXiv:2103.02117 [astro-ph.CO]

    Article  ADS  Google Scholar 

  36. E.N. Saridakis, R. Lazkoz, V. Salzano, P. Vargas Moniz, S. Capozziello, J. Beltrán Jiménez, M. De Laurentis, G.J. Olmo, eds., Modified gravity and cosmology: an update by the CANTATA network (Springer Nature Switzerland, Cham, 2021), ISBN 978-3-030-83714-3, arXiv:2105.12582 [gr-qc]

  37. M. Benetti, S. Capozziello, G. Lambiase, Mon. Not. R. Astron. Soc., 500, 1795 (2021). arXiv:2006.15335 [astro-ph.CO]

    Article  ADS  Google Scholar 

  38. A.D.A.M. Spallicci, J.A. Helayël-Neto, M. López-Corredoira, S. Capozziello, Eur. Phys. J. C. 81, 4 (2021). arXiv:2011.12608 [astro-ph.CO]

    Article  ADS  Google Scholar 

  39. A.D.A.M. Spallicci, G. Sarracino, S. Capozziello, Eur. Phys. J. Plus 137, 1–18 (2022). arXiv:2202.02731

    Article  Google Scholar 

  40. B.P. Abbott et al., LIGO scientific collaboration and Virgo collaboration. Phys. Rev. Lett. 116, 061102 (2016). arXiv:1602.03837 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  41. G.B. Gelmini, A. Kusenko, T.J. Weiler, Sci. Am. 302, 38 (2010)

    Article  ADS  Google Scholar 

  42. S. Capozziello, W.-G. Boskoff, A mathematical journey to quantum mechanics, UNITEX for physics (Springer, Dordrecht, 2021) ISBN: 978-3-030-86098-1

    Book  MATH  Google Scholar 

  43. P. Di Bari, Progr. Part. Nucl. Phys. 122, 103913 (2021). arXiv:2107.13750 [hep-ph]

    Google Scholar 

  44. R.N. Mohapatra, G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980)

    Article  ADS  Google Scholar 

  45. j a Formaggio, A. L. C. de Gouvêa, R. G. Hamish Robertson, Phys. Rep. 914, 1 (2021). arXiv:2102.00594 [nucl-ex]

    Article  ADS  Google Scholar 

  46. D. Colladay, V.A. Kostelecký, Phys. Rev. D 55, 6760 (1997). arXiv:hep-ph/9703464

    Article  ADS  Google Scholar 

  47. D. Colladay, V.A. Kostelecký, Phys. Rev. D 58, 116002 (1998). arXiv:hep-ph/9809521

    Article  ADS  Google Scholar 

  48. L. Bonetti, L.R. dos Santos Filho, J.A. Helayël-Neto, A.D.A.M. Spallicci, Phys. Lett. B 764, 203 (2017). arXiv:1607.08786 [hep-ph]

    Article  ADS  Google Scholar 

  49. L. Bonetti, L.R. dos Santos Filho, J.A. Helayël-Neto, A.D.A.M. Spallicci, Eur. Phys. J. C 78, 811 (2018). arXiv:1709.04995 [hep-th]

    Article  ADS  Google Scholar 

  50. L. de Broglie, J. Phys. et Radium 3, 422 (1922)

    Article  Google Scholar 

  51. L. de Broglie, Comptes Rendus Hebd. Séances Acad. Sci. Paris 177, 507 (1923)

    Google Scholar 

  52. L. de Broglie, Recherches sur la théorie des quanta (Masson & Cie, Paris, 1924), Doctorate thesis (Dir. P. Langevin) Université de Paris, Sorbonne

  53. L. de Broglie, Nouvelles recherches sur la lumière, vol. 411 of Actualités Scientifiques et Industrielles (Hermann & Cie, Paris, 1936)

  54. L. de Broglie, La mécanique ondulatoire du photon. Une nouvelle théorie de la lumière (Hermann & Cie, Paris, 1940)

  55. A. Proca, Comptes Rendus Hebd. Séances Acad. Sci. Paris 202, 1490 (1936)

    Google Scholar 

  56. A. Proca, Comptes Rendus Hebd. Séances Acad. Sci. Paris 203, 709 (1936)

    Google Scholar 

  57. A. Proca, J. Phys. et Radium 7, 347 (1936)

    Article  Google Scholar 

  58. A. Proca, J. Phys. et Radium 8, 23 (1937)

    Article  Google Scholar 

  59. E.R. Williams, J.E. Faller, H.A. Hill, Phys. Rev. Lett. 26, 721 (1971)

    Article  ADS  Google Scholar 

  60. A. Retinò, A.D.A.M. Spallicci, A. Vaivads, Astropart. Phys. 82, 49 (2016). arXiv:1302.6168 [hep-ph]

    Article  ADS  Google Scholar 

  61. L. Bonetti, J. Ellis, N.E. Mavromatos, A.S. Sakharov, E.K. Sarkisian-Grinbaum, A.D.A.M. Spallicci, Phys. Lett. B 757, 548 (2016). arXiv: 1602.09135 [astro-ph.HE]

    Article  ADS  Google Scholar 

  62. L. Bonetti, J. Ellis, N.E. Mavromatos, A.S. Sakharov, E.K. Sarkisian-Grinbaum, A.D.A.M. Spallicci, Phys. Lett. B 768, 326 (2017). arXiv:1701.03097 [astro-ph.HE]

    Article  ADS  Google Scholar 

  63. M.J. Bentum, L. Bonetti, A.D.A.M. Spallicci, Adv. Space Res. 59, 736 (2017). arXiv:1607.08820 [astro-ph.IM]

    Article  ADS  Google Scholar 

  64. A. D. A. M. Spallicci, G. Sarracino, O. Randriamboarison, J. A. Helayël-Neto (2022), arXiv:2205.02487 [hep-ph]

  65. M. Born, L. Infeld, Proc. R. Soc. Lond. A 144, 425 (1934)

    Article  ADS  Google Scholar 

  66. M. Born, L. Infeld, Proc. R. Soc. Lond. A 150, 141 (1935)

    Article  ADS  Google Scholar 

  67. W. Heisenberg, H. Euler, Zeitschr. Phys. 98, 714 (1936)

    Article  ADS  Google Scholar 

  68. J.A. Helayël-Neto, A.D.A.M. Spallicci, Eur. Phys. J. C 79, 590 (2019). arXiv:1904.11035 [hep-ph]

    Article  ADS  Google Scholar 

  69. D.M. Scolnic, D.O. Jones, A. Rest, Y.C. Pan, R. Chornock, R.J. Foley, M.E. Huber, R. Kessler, G. Narayan, A.G. Riess et al., Astrophys. J. 859, 101 (2018). arXiv:1710.00845 [astro-ph.CO]

    Article  ADS  Google Scholar 

  70. F. Beutler, C. Blake, M. Colless, D.H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker, W. Saunders, F. Watson, Mon. Not. R. Astron. Soc. 416, 3017 (2011). arXiv:1106.3366 [astro-ph.CO]

    Article  ADS  Google Scholar 

  71. C. Blake, E.A. Kazin, F. Beutler, T.M. Davis, D. Parkinson, S. Brough, M. Colless, C. Contreras, W. Couch, S. Croom et al., Mon. Not. R. Astron. Soc. 418, 1707 (2011). arXiv:1108.2635 [astro-ph.CO]

    Article  ADS  Google Scholar 

  72. A.J. Ross, L. Samushia, C. Howlett, W.J. Percival, A. Burden, M. Manera, Mon. Not. R. Astron. Soc. 449, 835 (2015). arXiv:1409.3242 [astro-ph.CO]

    Article  ADS  Google Scholar 

  73. H. du Mas, J. des Bourboux, J. Rich, A. Font-Ribera, V. de Sainte Agathe, J. Far, T. Etourneau, J. Le Goff, A. Cuceu, C. Balland et al., Astrophys. J. 901, 153 (2020). arXiv:2007.08995  [astro-ph.CO]

    Article  ADS  Google Scholar 

  74. S. Alam, M. Aubert, S. Avila, C. Balland, J.E. Bautista, M.A. Bershady, D. Bizyaev, M.R. Blanton, A.S. Bolton, J. Bovy et al., Phys. Rev. D 103, 083553 (2021). arXiv:2007.08991 [astro-ph.CO]

    Article  ADS  Google Scholar 

  75. D. Scolnic, D. Brout, A. Carr, A.G. Riess, T.M. Davis, A. Dwomoh, D.O. Jones, N. Ali, P. Charvu, R. Chen et al., Astrophys. J. 938, 113 (2022). arXiv:2112.03863 [astro-ph.CO]

    Article  ADS  Google Scholar 

  76. D. Brout, D. Scolnic, B. Popovic, A.G. Riess, A. Carr, J. Zuntz, R. Kessler, T.M. Davis, S. Hinton, D. Jones et al., Astrophys. J. 938, 110 (2022). arXiv:2202.04077 [astro-ph.CO]

    Article  ADS  Google Scholar 

  77. A.G. Riess, W. Yuan, L.M. Macri, D. Scolnic, D. Brout, S. Casertano, D.O. Jones, Y. Murakami, G.S. Anand, L. Breuval et al., Astrophys. J. L. 934, L7 (2022). arXiv:2112.04510 [astro-ph.CO]

    Article  ADS  Google Scholar 

  78. A. Aspect, P. Grangier, Hyperf. Interact. 37, 1 (1987)

    Article  ADS  Google Scholar 

  79. V.A. Kostelecký, S. Samuel, Phys. Rev. D 39, 683 (1989)

    Article  ADS  Google Scholar 

  80. A. Einstein, W. de Sitter, Proc. Nat. Ac. Sci. USA 18, 213 (1932)

    Article  ADS  Google Scholar 

  81. The Supernova Cosmology Project: S. Perlmutter, S. Gabi, G. Goldhaber, A. Goobar, D.E. Groom, I. M. Hook, A.G. Kim, M.Y. Kim, J.C. Lee, R. Pain et al., Astrophys. J. 483, 565 (1997). arXiv:astro-ph/9608192

    Article  ADS  Google Scholar 

  82. Planck Collaboration: N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, N. Bartolo, S. Basak et al., Astron. Astrophys. 641, A6 (2020). arXiv:1807.06209 [astro-ph.CO]

    Article  Google Scholar 

  83. A.G. Riess, S. Casertano, W. Yuan, L.M. Macri, D. Scolnic, Astrophys. J. 876, 85 (2019). arXiv:1903.07603 [astro-ph.CO]

    Article  ADS  Google Scholar 

  84. D.W. Hogg, Distance measures in cosmology (1999). arXiv:astro-ph/9905116

  85. W. D’Arcy Kenworthy, D. Scolnic, A. Riess, Astrophys. J. 875, 145 (2019). arXiv:1901.08681 [astro-ph.CO]

    Article  ADS  Google Scholar 

  86. M. Lopez-Corredoira , J.I. Calvo-Torel (2022). arXiv:2207.14688 [astro-ph.CO]

  87. E. Aubourg, S. Bailey, J.E. Bautista, F. Beutler, V. Bhardwaj, D. Bizyaev, M. Blanton, M. Blomqvist, A.S. Bolton, J. Bovy et al., BOSS collaboration. Phys. Rev. D 92, 123516 (2015). arXiv:1411.1074 [astro-ph.CO]

    Article  ADS  Google Scholar 

  88. G.S. Sharov, J. Cosm. Astropart. Phys. 06, 023 (2016). arXiv:1506.05246 [gr-qc]

    Article  ADS  Google Scholar 

  89. J. Torrado, A. Lewis, J. Cosm. Astropart. Phys. 05, 057 (2021). arXiv:2005.05290 [astro-ph.IM]

    Article  ADS  Google Scholar 

  90. S.D. Odintsov, D.S.-C. Gómez, G.S. Sharov, Eur. Phys. J. C 77, 064016 (2017). arXiv:1709.06800 [gr-qc]

    Article  Google Scholar 

  91. L. Yang, C.-C. Lee, L.-W. Luo, C.-Q. Geng, Phys. Rev. D 82, 103515 (2010). arXiv:1010.2058 [astro-ph.CO]

    Article  ADS  Google Scholar 

  92. Y. Chen, C.-Q. Geng, C.-C. Lee, L.-W. Luo, Z.-H. Zhu, Phys. Rev. D 91, 044019 (2015). arXiv:1407.4303 [astro-ph.CO]

    Article  ADS  Google Scholar 

  93. S. Capozziello, F. Bajardi, Int. J. Mod. Phys. D 31, 223009 (2022). arXiv:2201.04512[gr-qc]

    Article  Google Scholar 

  94. P. Astier, R. Pain, Comptes Rendus Phys. 13, 521 (2012). arXiv:1204.5493 [astro-ph.CO]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Acknowledgements are due to J.A. Helayël-Neto (Rio de Janeiro) for our common work on the Extended Theories of Electromagnetism, to S. Savastano (Potsdam) for the work on the Cobaya routine, and to M. Lòpez Corredoira (La Laguna) for general comments and inputs. GS is grateful to the LPC2E laboratory for its hospitality during the work period on this manuscript. GS and SC acknowledge the support of Istituto Nazionale di Fisica Nucleare, Sez. di Napoli, Iniziative Specifiche MOONLIGHT-2 and QGSKY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Sarracino.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarracino, G., Spallicci, A.D.A.M. & Capozziello, S. Investigating dark energy by electromagnetic frequency shifts II: the Pantheon+ sample. Eur. Phys. J. Plus 137, 1386 (2022). https://doi.org/10.1140/epjp/s13360-022-03595-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03595-6

Navigation