Skip to main content
Log in

Structures, electronic and magnetic properties of first-row TMn@Zn18S18 (n = 1–3) clusters

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The transitional metal (TM)-doped ZnS nanoparticles often display core@shell structures. The magnetic properties of TM-doped ZnS rely heavily on the concentration of the magnetic impurities. The structures, electronic and magnetic properties of first-row TM embedded in the Zn18S18 cages (TMn@Zn18S18, n = 1–3) were studied using first principles. The results show that the Ni2@Zn18S18, Ti3@Zn18S18, V3@Zn18S18, Co3@Zn18S18, and Ni3@Zn18S18 clusters are more structurally stable than the Zn18S18 cages. The TMn clusters obviously improve the chemical reactivity of Zn18S18 cages. The TMn (Cr, Mn, Ni, Cu and Zn; Fe2, Co2, Ni2 and Cu2; Mn3, Co3, Ni3 and Cu3) clusters obtain a few electrons from the Zn18S18 cages. The net spin densities of the TMn@Zn18S18 (TM = Mn, Fe, Co and Ni, n = 1–3) clusters are significantly affected by the number of integrated TM atoms.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. H. Absike, H. Labrim, B. Hartiti, K. Douhou, H. Ez-Zahraouy, Ab initio calculations on electronic, optical, and thermoelectric properties of (Si, Pb) (co)-doped ZnS for solar cell device applications. J. Phys. Chem. Solids. 132, 10–17 (2019)

    Article  ADS  Google Scholar 

  2. C.R.A. Catlow, S.T. Bromley, S. Hamad, M. Mora-Fonz, A.A. Sokol, S.M. Woodley, Modelling nano-clusters and nucleation. Phys. Chem. Chem. Phys. 12, 786–811 (2010)

    Article  Google Scholar 

  3. Y. Yong, X. Li, X. Hao, J. Cao, T. Li, Theoretical prediction of low-density nanoporous frameworks of zinc sulfide based on ZnnSn (n = 12, 16) nanocaged clusters. RSC Adv. 4, 37333–37341 (2014)

    Article  ADS  Google Scholar 

  4. L. Wang, P. Wang, B. Huang, X. Ma, G. Wang, Y. Dai, X. Zhang, X. Qin, Synthesis of Mn-doped ZnS microspheres with enhanced visible light photocatalytic activity. Appl. Surf. Sci. 391, 557–564 (2017)

    Article  ADS  Google Scholar 

  5. M. Dong, P. Zhou, C. Jiang, B. Cheng, J. Yu, First-principles investigation of Cu-doped ZnS with enhanced photocatalytic hydrogen production activity. Chem. Phys. Lett. 668, 1–6 (2016)

    Article  ADS  Google Scholar 

  6. H. Chen, D. Shi, J. Qi, Comparative studies on the magnetic properties of ZnS nanowires doped with transition metal atoms. J. Appl. Phys. 109, 084338 (2011)

    Article  ADS  Google Scholar 

  7. Q. Mahmood, S.M. Alay-e-Abbas, M. Hassan, N.A. Noor, First-principles evaluation of Co-doped ZnS and ZnSe ferromagnetic semiconductors. J. Alloy. Compd. 688, 809–907 (2016)

    Article  Google Scholar 

  8. Q. Mahmood, M. Hassan, N.A. Noor, Theoretical study of electronic, magnetic, and optical response of Fe-doped ZnS: first-principle approach. J. Supercond. Nov. Magn. 30, 1463–1471 (2017)

    Article  Google Scholar 

  9. C.-W. Zhang, S.-S. Yan, First-principles prediction of half-metallic ferromagnetism in Cu-doped ZnS. J. Appl. Phys. 107, 043913 (2010)

    Article  ADS  Google Scholar 

  10. Q. Liu, H. Zhao, X. Wang, J. Huo, L. Li, P. Gao, P. Qian, Y. Su, N. Chen, Theoretical investigation of Agn@(ZnS)42 (n = 6–16) using first principles: structural, electronic and optical properties. Prog. Nat. Sci. 29, 525–532 (2019)

    Article  Google Scholar 

  11. M.A. Lahiji, A.A. Ziabari, First-principle calculation of the elastic, band structure, electronic states, and optical properties of Cu-doped ZnS nanolayers. Physica B. 501, 146–152 (2016)

    Article  ADS  Google Scholar 

  12. X. Zhang, M. Zhao, S. Yan, T. He, W. Li, X. Lin, Z. Xi, Z. Wang, X. Liu, Y. Xia, First-principles study of ZnS nanostructures: nanotubes, nanowires and nanosheets. Nanotechnology 19, 305708 (2008)

    Article  ADS  Google Scholar 

  13. A.S. Barnard, C.A. Feigl, S.P. Russo, Morphological and phase stability of zinc blende, amorphous and mixed core-shell ZnS nanoparticles. Nanoscale 2, 2294–2301 (2010)

    Article  ADS  Google Scholar 

  14. Z.-H. Yin, J.-M. Zhang, K.-W. Xu, Structural, electronic and magnetic properties of transition metal atom-doped ZnS dilute magnetic semiconductors: a first-principles study. Mater. Chem. Phys. 183, 201–209 (2016)

    Article  Google Scholar 

  15. H. Chen, D. Shi, B. Wang, J. Qi, An unbiased structural optimization of zinc sulfide clusters (ZnS)n (n = 2–18). J. Comput. Theor. Nanos. 8, 2454–2461 (2011)

    Article  Google Scholar 

  16. B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508–517 (1990)

    Article  ADS  Google Scholar 

  17. B. Delley, From molecules to solids with the DMol3 approach. J. Chem. Phys. 113, 7756–7764 (2000)

    Article  ADS  Google Scholar 

  18. J.M. Matxain, M. Piris, X. Lopez, J.M. Ugalde, Thermally stable solids based on endohedrally doped ZnS clusters. Chem. Eur. J. 15, 5138–5144 (2009)

    Article  Google Scholar 

  19. Z. Zhao, Z. Li, G. Xue, X. Shen, J. Wu, First-principles calculations on the structures and electronic properties of the TMn@Si24H24O36 (TM = Cu, Ag and Au, n = 1–8) clusters. Mater. Chem. Phys. 262, 124272 (2021)

    Article  Google Scholar 

  20. Z. Zhao, Z. Li, Theoretical assessment of the differences in transition metal embedded fullerene-like Ga12N12 clusters. Chem. Phys. Lett. 754, 137752 (2020)

    Article  Google Scholar 

  21. Z. Li, J. Wu, Z. Zhao, Structures, electronic and magnetic properties of the transition metals adsorbed C18H9N27 clusters. Phase Transit. 95, 40–49 (2022)

    Article  Google Scholar 

  22. H. Chen, D. Shi, J. Qi, B. Wang, First-principles study on the structure, electronic, and magnetic properties of Mn-doped (ZnS)12 clusters. Physica E. 43, 117–124 (2010)

    Article  ADS  Google Scholar 

  23. Z. Li, Z. Zhao, Q. Wang, T. Shao, Structures and electronic properties of the transition metal adsorbed B36 clusters. Mod. Phys. Lett. B. 34, 2050387 (2020)

    Article  ADS  Google Scholar 

  24. H. Chen, D. Shi, J. Qi, B. Wang, Structure, electronic and magnetic properties of Cr-doped (ZnS)12 clusters: a first-principles study. Phys. Lett. A. 374, 4133–4139 (2010)

    Article  ADS  MATH  Google Scholar 

  25. R.S. Mulliken, Electron population analysis on LCAO-MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies. J. Chem. Phys. 23, 1841–1846 (1955)

    Article  ADS  Google Scholar 

  26. N. Kaur, K.L. Singh, K. Singh, H. Sharma, Effect of nitrogen as co-doping on transition metal doped (ZnS)12 clusters. J. Magn. Magn. Mater. 394, 397–403 (2015)

    Article  ADS  Google Scholar 

  27. Z. Li, X. Shen, Z. Zhao, Structures, electronic and magnetic properties of the FemOn@Cx (m = 1–3, n = 1–4, x = 50, 60) clusters. Res. Chem. Intermediat. 48, 339–349 (2022)

    Article  Google Scholar 

  28. D.L. Lalsare, A. Kshirsagar, First principles results of structural and electronic properties of ZnS clusters. Bull. Mater. Sci. 35, 1055–1062 (2012)

    Article  Google Scholar 

  29. J.M. Matxain, L.A. Eriksson, E. Formoso, M. Piris, J.M. Ugalde, Endohedral (X@ZniSi)i=4–160,± Nanoclusters, X = Li, Na, K, Cl, Br. J. Phys. Chem. C. 111, 3560–3565 (2007)

    Article  Google Scholar 

  30. L. Zhao, X. Qu, Y. Wang, J. Lv, L. Zhang, Z. Hu, G. Gu, Y. Ma, Structures, electronic and magnetic properties of transition metal atoms encapsulated in Mg12O12 nanocage. J. Phys. Condens. Matter. 29, 265401 (2017)

    Article  ADS  Google Scholar 

  31. L. Zhao, X. Qu, Y. Wang, J. Lv, L. Zhang, Z. Hu, G. Gu, Y. Ma, Effects of manganese doping on the structure evolution of small-sized boron clusters. J Phys: Condens. Matter. 29, 265401 (2017)

    ADS  Google Scholar 

  32. H. Chen, D. Shi, J. Qi, B. Wang, First-principles study on the magnetic properties of transition-metal atoms doped (ZnS)12 cluster. J. Magn. Magn. Mater. 323, 781–788 (2011)

    Article  ADS  Google Scholar 

  33. P. Fallahi, H. Jouypazadeh, H. Farrokhpour, Theoretical studies on the potentials of some nanocages (Al12N12, Al12P12, B12N12, Be12O12, C12Si12, Mg12O12 and C24) on the detection and adsorption of Tabun molecule: DFT and TD-DFT study. J. Mol. Liq. 260, 138–148 (2018)

    Article  Google Scholar 

  34. J. Lu, Z. Liu, H. Zhu, M. Xiang, Novel nanostructures built from Zn12S12 cage-like clusters. Comput. Theor. Chem. 1101, 74–82 (2017)

    Article  Google Scholar 

  35. K. Ayub, Are phosphide nano-cages better than nitride nano-cages? A kinetic, thermodynamic and non-linear optical properties study of alkali metal encapsulated X12Y12 nano-cages. J. Mater. Chem. C. 4, 10919–10934 (2016)

    Article  Google Scholar 

  36. Z. Li, Z. Zhao, G.-W. Xue, J. Wu, X. Shen, Theoretical prediction of the configurations, electronic and magnetic properties of the transition-metal@Zn12S12 clusters. Mater. Chem. Phys. 258, 123896 (2021)

    Article  Google Scholar 

  37. Z. Li, Z. Zhao, T.-T. Shao, First-principles calculations on the first row transition metals-substituted TMC6N7 clusters. Res. Chem. Intermediat. 46, 3097–3107 (2020)

    Article  Google Scholar 

  38. L. Pauling, The nature of the chemical bond-1992. J. Chem. Educ 69, 519–521 (1992)

    Article  Google Scholar 

  39. L. Liu, Y. Zou, H. Zhu, Structure and electronic properties of GaN tubelike clusters and single-walled GaN nanotubes. Int. J. Mod. Phys. B. 29, 1550116 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  40. A. Bafekry, S. Farjami Shayesteh, M. Ghergherehchi, F.M. Peeters, Adsorption of molecules on C3N nanosheet: a first-principle calculations. Chem. Phys. 526, 110442 (2019)

    Article  Google Scholar 

  41. P. Lu, C. Wu, Z. Cong, Y. Li, X. Zhang, Z. Yu, H. Cao, Fe-doped Ga12N12 clusters: electronic and magnetic properties. Mod. Phys. Lett. B. 27, 1350222 (2013)

    Article  ADS  Google Scholar 

  42. A. Bafekry, C. Stampfl, S. Farjami Shayesteh, F.M. Peeters, Exploiting the emerging novel electronic and magnetic properties of C3N via functionalization and conformation. Adv. Electron Mater. 5, 1900459 (2019)

    Article  Google Scholar 

  43. A. Bafekry, M. Ghergherehchi, S.F. Shayesteh, Tuning the electronic and magnetic properties of antimonene nanosheet via point defects and external fields: a first-principles calculations. Phys. Chem. Chem. Phys. 21, 10552–10566 (2019)

    Article  Google Scholar 

  44. E. Tahmasebi, E. Shakerzadeh, Z. Biglari, Theoretical assessment of the electro-optical features of the group III nitrides (B12N12, Al12N12 and Ga12N12) and group IV carbides (C24, Si12C12 and Ge12C12) nanoclusters encapsulated with alkali metals (Li, Na and K). Appl. Surf. Sci. 363, 197–208 (2016)

    Article  ADS  Google Scholar 

  45. Y.R. Zhao, Y.Q. Xu, P. Chen, Y.Q. Yuan, Y. Qian, Q. Li, Structural and electronic properties of medium-sized beryllium doped magnesium BeMgn clusters and their anions. Results Phys. 26, 104341 (2021)

    Article  Google Scholar 

  46. Y.R. Zhao, T.T. Bai, L.N. Jia, W. Xin, Y.H. Hu, X.S. Zheng, Probing the structural and electronic properties of neutral and anionic lanthanum-doped silicon clusters. J. Phys. Chem. C. 123, 28561–28568 (2019)

    Article  Google Scholar 

  47. N. Kaur, K.L. Singh, H. Sharma, First principle investigation of the magnetic properties of transition metal doped (ZnS)n (n=1–16) clusters. J. Magn. Magn. Mater. 388, 160–166 (2015)

    Article  ADS  Google Scholar 

  48. A. Bafekry, M. Ghergherehchi, F.M. Peeters, C3N monolayer: exploring the emerging of novel electronic and magnetic properties with adatom adsorption, functionalizations, electric field, charging and strain. J. Phys. Chem. C. 123, 12485–12499 (2019)

    Article  Google Scholar 

Download references

Funding

We gratefully acknowledge the financial support from the Key Fund Project of the National Science Foundation, People’s Republic of China (Grant No.51634004).

Author information

Authors and Affiliations

Authors

Contributions

ZZ contributed to data curation, formal analysis, investigation, methodology, writing—original draft, writing—review and editing. GWX contributed to investigation, writing—review and editing. ZL contributed to funding acquisition, writing—review and editing.

Corresponding author

Correspondence to Zhen Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Xue, Gw. & Li, Z. Structures, electronic and magnetic properties of first-row TMn@Zn18S18 (n = 1–3) clusters. Eur. Phys. J. Plus 137, 1369 (2022). https://doi.org/10.1140/epjp/s13360-022-03593-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03593-8

Navigation