Skip to main content
Log in

Strain-induced composition-dependent phonon and thermodynamical characteristics of BeZnX chalcogenide alloys and BeX/ZnX superlattices

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The results of a comprehensive lattice dynamical study are reported by using a realistic rigid ion model (RIM) for the novel zinc-blende binary (BeX, ZnX) compounds, ternary (BexZn1−xX) alloys and short-period (BeX)n/(ZnX)n superlattices (SLs), with X = Se, Te. In the RIM, we have meticulously included as well as accurately appraised the short-range forces up to second nearest neighbors and long-range Coulomb interactions for all the binary, ternary materials, and superlattice structures. Distinct variations perceived in the simulated phonon frequencies and thermodynamical traits of BeX, ZnX compounds including the ideal BexZn1−xX ternary alloys are attributed to the differences between cation (Be, Zn) and anion (X) masses as well as changes in their bond lengths, bond strength and bond (Be-X, Zn-X) covalency. In the short-period (BeX)n/(ZnX)n (001) SLs (n ≤ 4), the phonons propagating normally and obliquely to the interfaces as well as the anisotropy of zone-center (\(\vec{\user2{q}} = 0\)) modes are carefully examined while identifying the confined optical-, quasi-confined optical and interface phonons. The simulated results of phonon features are compared/contrasted very well with the existing experimental and theoretical data. Controlling the vibrational traits by altering the number of BeX, ZnX monolayers (n, m) in (BeX)n/(ZnX)m SLs can provide excellent opportunities of improving their electrical and thermal properties for engineering various electronic device structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. II–VI Semiconductor materials and their applications, Edited by M. C. Tamargo (Taylor Francis, 2002); O. Maksimov , S.P. Guo, M. Munoz, M.C. Tamargo, Optical properties of BeCdSe/ZnCdMgSe strained quantum well structures, J. Appl. Phys. 90, 5135 (2001).

  2. S.A.A. Rais, Z. Hassan, A. Shuhaimi, A. Bakar, M.N.A. Rahman, Y. Yusuf, M.I.M. Taib, A.F. Sulaiman, H.N. Hussin, M.F. Ahmad, M.N. Norizan, K. Nagai, Y. Akimoto, D. Shoji, Effect of indium pre-flow on wavelength shift and crystal structure of deep green light emitting diodes. Opt. Mater. Exp. 11, 926 (2021)

    Article  ADS  Google Scholar 

  3. P.J. Parbrook, B. Corbett, J. Han, T.-Y. Seong, H. Amano, Micro-light emitting diode: from chips to applications. Laser Photonics Rev. 15, 2000133 (2021)

    Article  ADS  Google Scholar 

  4. T.K. Ng, J. A. H.-Lerma, C. H. Kang, I. Ashry, H. Zhang, G. Bucci and B. S. Ooi, Group-III-nitride and halide-perovskite semiconductor gain media for amplified spontaneous emission and lasing applications. J. Phys. D: Appl. Phys. 54, 143001 (2021)

    Article  ADS  Google Scholar 

  5. C. Weisbuch, Review—on the search for efficient solid state light emitters: past present, future. ECS J Solid-State Sci Technol 9, 016022 (2020)

    Article  ADS  Google Scholar 

  6. M. Siekacz, G. Muziol, H. Turski, M. Hajdel, M. Zak, M. Chlipała, M. Sawicka, K.N. Szkudlarek, A.F. Zmuda, J.S. Koziorowska, S. Stanczyk, C. Skierbiszewski, Vertical integration of nitride laser diodes and light emitting diodes by tunnel junctions. Electronics 9, 1481 (2020)

    Article  Google Scholar 

  7. Y. Zhang, G. Deng, Y. Yu, Y. Wang, D. Zhao, Z. Shi, B. Zhang, X. Li, Demonstration of N-polar III-nitride tunnel junction LED. ACS Photonics 7, 1723 (2020)

    Article  Google Scholar 

  8. Light-Emitting Diodes Materials, Processes, Devices and Applications, J. Li, G. Q. Zhang Editors, (Springer, 2019).

  9. P. Vashishtha, M. Ng, S.B. Shivarudraiah, J.E. Halpert, High Efficiency blue and green light-emitting diodes using ruddlesden-popper inorganic mixed halide perovskites with butylammonium interlayers. Chem. Mater. 31, 83 (2019)

    Article  Google Scholar 

  10. H.S. Wasisto, J.D. Prades, J. Gulink, A. Waag, Beyond solid-state lighting: Miniaturization, hybrid integration, and applications of GaN nano-and micro-LEDs. Appl. Phys. Rev. 6, 041315 (2019)

    Article  Google Scholar 

  11. M. Anni, Polymer II–VI nanocrystals blends: basic physics and device applications to lasers and LEDs. Nanomaterials 9, 1036 (2019)

    Article  Google Scholar 

  12. K. Yamano, K. Kishino, Selective area growth of InGaN-based nanocolumn LED crystals on AlN/Si substrates useful for integrated μ-LED fabrication. Appl. Phys. Lett. 112, 091105 (2018)

    Article  ADS  Google Scholar 

  13. H. Asano, T. Omata, Design of cadmium-free colloidal II–VI semiconductor quantum dots exhibiting RGB emission. AIP Adv. 7, 045309 (2017)

    Article  ADS  Google Scholar 

  14. T Garcia, Heterojunction Engineering for Next Generation Hybrid II–VI Materials, PhD Thesis, The City University of New York (2017)

  15. Y. Jang, A. Shapiro, M. Isarov, A. Rubin-Brusilovski, A. Safran, A.K. Budniak, F. Horani, J. Dehnel, A. Sashchiuk, E. Lifshitz, Interface control of electronic and optical properties in IV–VI and II–VI core/shell colloidal quantum dots: a review. Chem. Commun. 53, 1002–1024 (2017)

    Article  Google Scholar 

  16. X. Fang, M. Roushan, R. Zhang, J. Peng, H. Zeng, J. Li, Tuning and enhancing white light emission of II–VI based inorganic-organic hybrid semiconductors as single-phased phosphors. Chem. Mater. 24, 1710–1717 (2012)

    Article  Google Scholar 

  17. D. Bera, L. Qian, T.-K. Tseng, P.H. Holloway, quantum dots and their multimodal applications: a review. Materials 3(4), 2260 (2010)

    Article  ADS  Google Scholar 

  18. M. Fox and R. Ispasoiu, (2011) “Quantum wells, superlattices and band-gap engineering,” in Springer Handbook of Electronic and Photonic Materials, edited by S. Kasp and P. Capper (Springer, 2017), pp. 1037; H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells, Opt. Express 19(S4), A991

  19. O. Maksimov, Beryllium chalcogenide alloys for visible light emitting and laser diodes. Rev. Adv. Mater. Sci. 9, 178 (2005)

    Google Scholar 

  20. W.R. Chen, C.J. Huang, ZnSe-based mixed-color LEDs. IEEE Phot. Tech. Lett 16, 1259 (2004)

    Article  ADS  Google Scholar 

  21. M.A. Haase, J. Qiu, J.M. DePuydt, H. Cheng, Blue-green laser diodes. Appl. Phys. Lett. 59, 1272 (1991)

    Article  ADS  Google Scholar 

  22. B.S. Li, R. Akimoto, K. Akita, H. Hasama, Structural study of (CdS/ZnSe)/BeTe superlattices for λ= 1.55 μm intersubband transition. J. Appl. Phys. 95, 5352 (2004)

    Article  ADS  Google Scholar 

  23. J. Kasai, R. Akimoto, H. Kuwatsuka, T. Hasama, H. Ishikawa, S. Fujisaki, T. Kikawa, S. Tanaka, S. Tsuji, H. Nakajima, K. Tasai, Y. Takiguchi, T. Asatsuma, K. Tamamura, 545 nm room-temperature continuous-wave operation of BeZnCdSe quantum-well green laser diodes with low threshold current density. Appl. Phys. Express 3, 091201 (2010)

    Article  ADS  Google Scholar 

  24. J.I. Kasai, R. Akimoto, T. Hasama, H. Ishikawa, S. Fujisaki, S. Tanaka, S. Tsuji, ibid Green-to-yellow continuous-wave operation of BeZnCdSe quantum-well laser diodes at room temperature. Appl. Phys. Express 4, 082102 (2011)

    Article  ADS  Google Scholar 

  25. J. Kasai, R. Akimoto, T. Hasama, H. Ishikawa, S. Fujisaki, S. Tanaka, S. Tsuji, Green/yellow luminescence from highly strained BeZnCdSe quantum wells grown by molecular beam epitaxy. Phys. Status Solidi C 9, 255–258 (2012). https://doi.org/10.1002/pssc.201100214

    Article  ADS  Google Scholar 

  26. J. Feng, R. Akimoto, BeZnCdSe quantum-well ridge-waveguide laser diodes under low threshold room-temperature continuous-wave operation. Appl. Phys. Lett. 107, 161101 (2015)

    Article  ADS  Google Scholar 

  27. R. Akimoto, Recombination-enhanced effect in green/yellow luminescence from BeZnCdSe quantum wells grown by molecular beam epitaxy. J. Electr. Mater. 47, 4226 (2018)

    Article  ADS  Google Scholar 

  28. J.H. Chang, J.S. Song, K. Godo, T. Yao, M.Y. Shen, T. Go, ZnCdTe/ZnTe /ZnMgSeTe quantum-well structures for the application to pure-green light-emitting devices. Appl. Phys. Lett. 78, 566 (2001)

    Article  ADS  Google Scholar 

  29. S. Che, I. Nomura, A. Kikuchi, K. Kishino, Yellow-green ZnCdSe/BeZnTe II–VI laser diodes grown on InP substrates. Appl. Phys. Lett. 81, 972 (2002)

    Article  ADS  Google Scholar 

  30. I. Nomura, A. Manoshiro, A. Kikuchi, K. Kishino, Yellow–green lasing operations of ZnCdTe/MgZnSeTe laser diodes on ZnTe substrates. Phys. Status Solidi B 243, 955 (2006)

    Article  ADS  Google Scholar 

  31. I. Nomura, Y. Sawafuji, K. Kishino, Photopumped lasing characteristics in green-to-yellow range for BeZnSeTe II–VI compound quaternary double heterostructures grown on InP substrates. Jpn. J. Appl. Phys. 50, 031201 (2011)

    Article  ADS  Google Scholar 

  32. J.C. Phillips, Bonds and Bands in semiconductors (Academic, New York, 1973)

    Google Scholar 

  33. D. Sands, Diode lasers (IOP publishing, 2005).

  34. S. Adachi, Properties of Semiconductor Alloys, S. Adachi (Wiley, 2009)

  35. I.F. Chang, S.S. Mitra, Application of a modified random-element-isodisplacement model to long-wavelength optic phonons of mixed crystals. Phys. Rev. 172, 924 (1968)

    Article  ADS  Google Scholar 

  36. A. Waag, F. Fischer, H.J. Lugauer, T. Litz, J. Laubender, U. Lunz, U. Zhender, W. Ossau, T. Gerhardt, M. Moller, G. Landwehr, Molecular-beam epitaxy of beryllium-chalcogenide-based thin films and quantum-well structures. J. Appl. Phys. 80, 792 (1996)

    Article  ADS  Google Scholar 

  37. A. Waag, F. Fischer, K. Schüll, T. Baron, H.-J. Lugauer, Th. Litz, U. Zehnder, W. Ossau, T. Gerhard, M. Keim, G. Reuscher, G. Landwehr, Laser diodes based on beryllium-chalcogenides. Appl. Phys. Lett. 70, 280 (1997)

    Article  ADS  Google Scholar 

  38. V. Wagner, J. Geurts, T. Gerhard, T. Litz, H.-J. Lugauer, F. Fischer, A. Waag, G. Landwehr, T. Walter, D. Gerthsen, Determination of BeTe phonon dispersion by Raman spectroscopy on BeTe/ZnSe-superlattices. Appl. Surf. Sci. 123(124), 580–584 (1998)

    Article  ADS  Google Scholar 

  39. T. Walter, A. Rosenauer, R. Wittmann, D. Gerthsen, F. Fischer, T. Gerhard, A. Waag, G. Landwehr, P. Schunk, T. Schimmel, Structural properties of BeTe/ZnSe superlattices. Phys. Rev. B 59, 8114 (1999)

    Article  ADS  Google Scholar 

  40. V. Wagner, S. Gundel, J. Geurts, T. Gerhard, T. Litz, H.-J. Lugauer, F. Fischer, A. Waag, G. Landwehr, R. Kruse, C. Becker, U. Kiister, Optical and acoustical phonon properties of BeTe. J. Cryst. Growth 184(185), 1067–1071 (1998)

    Article  ADS  Google Scholar 

  41. V. Wagner, J. Geurts Raman, Modulation Spectroscopy at II–VI Semiconductor Interfaces. Phys. Stat. Sol. 184, 29–39 (2001)

    Article  ADS  Google Scholar 

  42. I. I. Reshina, S. V. Ivanov, V. A. Kosobukin, S. V. Sorokin, and A. A. Toropov, Acoustic, Optical, and Interface Phonons in BeTe/ZnSe Superlattices, Physics of the Solid State, 45, 1579–1585 (2003); ibid Optical and interface phonons of different kind in BeTe/ZnSe superlattices, phys. stat. sol. (b) 241, 511–514 (2004). https://doi.org/10.1002/pssb.200304162

  43. J.S. Song, J.H. Chang, M.W. Cho, T. Hanada, T. Yao, Growth and characterization of ZnSe/BeTe superlattices. J. Cryst. Growth 229, 104–110 (2001)

    Article  ADS  Google Scholar 

  44. A.A. Wronkowska, A. Wronkowski, F. Firszt, S. Łęgowski, Investigation of II–VI alloy lattice dynamics by IR spectroscopic ellipsometry. Cryst. Res. Technol. 41, 580 (2006)

    Article  Google Scholar 

  45. O. Pagès, M. Ajjoun, D. Bormann, C. Chauvet, E. Tournié, and J. P. Faurie, Vibrational evidence for a percolative behavior in Zn1−xBexSe, Phys. Rev. B 65, 035213 (2001).; ibid Appl. Phys. Lett. 80, 3081 (2002); Phys. Rev. B 70, 155319 (2004).

  46. S.V. Ivanov, S.V. Sorokin and I.V. Sedova, Molecular Beam Epitaxy. Ch. 27 Elsevier (2013). https://doi.org/10.1016/B978-0-12-387839-7.00027-0

  47. S.P. Guo, Y. Luo, W. Lin, O. Maksimov, M.C. Tamargo, I. Kuskovsky, C. Tian, G.F. Neumark, High crystalline quality ZnBeSe grown by molecular beam epitaxy with Be–Zn co-irradiation. J. Cryst. Growth 208, 205–210 (2000)

    Article  ADS  Google Scholar 

  48. H. Lee, I.Y. Kim, J. Powell, D.E. Aspnes, S. Lee, F. Peiris, J.K. Furdyna, Visible-near ultraviolet ellipsometric study of Zn1−xMgxSe and Zn1−xBexSe alloys. J. Appl. Phys. 88, 878–883 (2000)

    Article  ADS  Google Scholar 

  49. K. Wilmers, T. Wethkamp, N. Esser, C. Cobet, W. Richter, V. Wagner, H. Lugauer, F. Fischer, T. Gerhard, M. Keim, M. Cardona, VUV-ellipsometry on BexZn1−xSe and BeTe. J. Electron. Mater. 28, 670 (1999)

    Article  ADS  Google Scholar 

  50. M. Nagelstraßer, H. Dröge, H.-P. Steinrück, F. Fischer, T. Litz, A. Waag, G. Landwehr, A. Fleszar, W. Hanke, Band structure of BeTe: A combined experimental and theoretical study. Phys. Rev. B 58, 10394 (1998)

    Article  ADS  Google Scholar 

  51. R. Pa ̈ssler, Limiting Debye temperature behavior following from cryogenic heat capacity data for group-IV, III–V, and II–VI materials. Phys. Status Solidi B247, 77–92 (2010). https://doi.org/10.1002/pssb.200945158

    Article  ADS  Google Scholar 

  52. B.H. Lee, Pressure dependence of the second-order elastic constants of ZnTe and ZnSe. J. Appl. Phys. 41, 2988 (1970)

    Article  ADS  Google Scholar 

  53. R. Khenata, A. Bouhemadou, M. Hichour, H. Baltache, D. Rached, M. Rérat, Elastic and optical properties of BeS, BeSe and BeTe under pressure. Solid-State Electron. 50, 1382–1388 (2006)

    Article  ADS  Google Scholar 

  54. R. Dutta, S. Alptekin, N. Mandal, Electronic structure, optical properties and the mechanism of the B3–B8 phase transition of BeSe: Insights from hybrid functionals, lattice dynamics and NPH molecular dynamics. J. Phys. Condens. Matter 25, 125401 (2013)

    Article  ADS  Google Scholar 

  55. C.M. Okoye, Structural, electronic, and optical properties of beryllium mono-chalcogenides. Eur. Phys. J. B 39, 5–17 (2004)

    Article  ADS  Google Scholar 

  56. P.M. Gonzalez-Diaz, P. Rodriguez-Hernandez, A. Munoz, Elastic constant and electronic structure of beryllium chalcogenides BeS, BeSe and BeTe from first principles calculations. Phys. Rev. B 55, 14043–14046 (1997)

    Article  ADS  Google Scholar 

  57. A. Munoz, P. Rodriguez-Hernandez, A. Mujica, Electronic and structural properties of BeSe, BeTe and BeS: Comparison between ab initio theory and experiments. Phys. Status Solidi B 198, 439–446 (1996)

    Article  ADS  Google Scholar 

  58. P. Van Camp, V. Van Doren, Ground state properties and structural phase transformation of beryllium sulphide. Solid State Commun. 98, 741–743 (1996)

    Article  ADS  Google Scholar 

  59. K. Bouamama, K. Daoud, K. Kassali, Ab initio calculations in the virtual crystal approximation of the structural and the elastic properties of BeSxSe1−x alloys under high pressure. Modell. Simul. Mater. Sci. Eng. 13, 1153–1162 (2005)

    Article  ADS  Google Scholar 

  60. Y. Cai, R. Xu, Atomic mechanism of zinc-blende to NiAs high-pressure phase transition in BeTe. J. Phys. Condens. Matter 20, 485218 (2008)

    Article  Google Scholar 

  61. H. Luo, K. Ghandehari, R.G. Greene, A.L. Ruoff, S.S. Trail, F.J. DiSalvo, Phase transformation of BeSe and BeTe to the NiAs structure at high pressure. Phys. Rev. B 52, 7058 (1995)

    Article  ADS  Google Scholar 

  62. C. Vérié, in Semiconductors Heteroepitaxy. ed. by B. Gil, R.L. Aulombard (World Scientific, Singapore, 1995), p.73

    Google Scholar 

  63. R.G. Dandrea, C.B. Duke, Design of ohmic contacts to p-ZnSe. Appl. Phys. Lett. 64, 2145 (1994)

    Article  ADS  Google Scholar 

  64. W.M. Yim, J.B. Dismakes, E.J. Stofko, R.J. Paff, Synthesis and some properties of BeTe, BeSe and BeS. J. Phys. Chem. Solids 33, 501 (1972)

    Article  ADS  Google Scholar 

  65. W. Zachariasen, Über die Kristallstruktur der Telluride von Beryllium, Zink, Cadmium und Quecksilber, Z. Physik Chem. (Leipzing) 119, 210 (1926)

  66. A. Gassoumi, A.M. Alshehria, N. Bouarissa, Electronic structure and optical response for Zn1−xBexSe. Res. Phys. 12, 1294–1298 (2019)

    Google Scholar 

  67. D. Heciri, L. Beldi, S. Drablia, H. Meradji, N.E. Derradji, H. Belkhir, B. Bouhafs, First-principles elastic constants and electronic structure of beryllium chalcogenides BeS, BeSe and BeTe. Comp. Mat. Sci. 38, 609 (2007)

    Article  Google Scholar 

  68. D. Heciri, H. Belkhir, A. Hamidani, M. Bououdina, R. Ahuja, Theoretical investigation of structural, electronic and optical properties of (BeS)1/(BeSe)1, (BeSe)1/(BeTe)1 and (BeS)1/(BeTe)1 superlattices under pressure. Chem. Phys. Lett. 713, 71–84 (2018)

    Article  ADS  Google Scholar 

  69. M. Caid, H. Rached, D. Rached, R. Khenata, S. Bin Omran, D. Varshney, B. Abidri, N. Benkhettou, A. Chahed, O. Benhella, Electronic structure and optical properties of (BeTe)n/(ZnSe)m superlattices. Mater. Sci. Poland 34, 115–125 (2016). https://doi.org/10.1515/msp-2016-0004

    Article  ADS  Google Scholar 

  70. L. Djoudi, M. Merabet, M. Boucharef, S. Benalia, D. Rached, First-principles calculations to investigate structural, electronic and optical properties of (BeTe)n/(CdS)n superlattices. Superlatt. Microstr. 75, 233 (2014)

    Article  ADS  Google Scholar 

  71. I. Khan, I. Ahmad, D. Zhang, H.A.R. Aliabad, S.J. Asadabadi, J. Phys. Chem. Solids 74, 181 (2013)

    Article  ADS  Google Scholar 

  72. G.P. Srivastava, H.M. Tütüncü, N. Günhan, First-principles studies of structural, electronic, and dynamical properties of Be chalcogenides. Phys. Rev. B 70, 085206 (2004)

    Article  ADS  Google Scholar 

  73. R. Khenata, A. Bouhemadou, M. Sahnoun, H. Ali, H. Reshak, M.R. Baltache, Elastic, electronic and optical properties of ZnS, ZnSe and ZnTe under pressure. Comput. Mater. Sci. 38, 29–38 (2006)

    Article  Google Scholar 

  74. D.N. Talwar, Optical and vibrational properties of Be-Zn chalcogenide alloys and superlattices. Phys. Rev. B 82(085), 207 (2010)

    Google Scholar 

  75. S. Laref, A. Laref, Thermal properties of BeX (X = S, Se and Te) compounds from ab initio quasi-harmonic method. Comput. Mater. Sci. 51, 135–140 (2012)

    Article  Google Scholar 

  76. B. Iyorzor, M. Babalola, E. Aigbekaen, Ab initio calculation of the structural, mechanical and thermodynamic properties of beryllium sulphide (BeS). J. Appl. Sci. Environ. Manage. 22, 41–46 (2018)

    Google Scholar 

  77. Z.-C. Guo, F. Luo, G.-F. Ji, L.-C. Cai, Y. Cheng, First-principles calculation of structural stability, lattice dynamic and thermodynamic properties of BeX (X= S, Se and Te) compounds under high pressure. Phil. Mag. 95, 275 (2015)

    Article  ADS  Google Scholar 

  78. A.K. Bhojani, H.R. Soni, P.K. Jha, Strain induced modifications in the structural, electronic, and vibrational properties of beryllium chalcogenides. AIP Adv. 10, 015046 (2020). https://doi.org/10.1063/1.5121832

    Article  ADS  Google Scholar 

  79. D.N. Talwar, S. Semone, P. Becla, Interface-induced localization of phonons in BeSe/ZnSe superlattices. Appl. Phys. Lett. 117, 183104 (2020). https://doi.org/10.1063/5.0026067

    Article  ADS  Google Scholar 

  80. D.N. Talwar, S. Semone, P. Becla, Comparative study of interfacial strain dependent phonon localization in the beryllium-zinc chalcogenide superlattices. Mat. Chem. Phys. 277, 125523 (2022)

    Article  Google Scholar 

  81. V. Davydov, E. Roginskii, Y. Kitaev, A. Smirnov, I. Eliseyev, D. Nechaev, V. Jmerik, M. Smirnov, Phonons in short-period GaN/AlN superlattices: group-theoretical analysis Ab initio calculations, and Raman spectra. Nanomaterials 11, 286 (2021). https://doi.org/10.3390/nano11020286

    Article  Google Scholar 

  82. S. Baroni, P. Giannozzi, E. Molinari, Phonon spectra of ultrathin GaAs–AlAs superlattices: an ab initio calculation. Phys. Rev. B 41, 3870 (1990)

    Article  ADS  Google Scholar 

  83. A.V. Kosobutskii, E.N. Malysheva, Ab initio calculations of phonon spectra of (GaP)n(AlP)m Superlattices. Semiconductors 42, 1208–1213 (2008)

    Article  ADS  Google Scholar 

  84. K. Kunc, Dynamique de réseau de composés ANB8-N présentant la structure de la blende. Ann. Phys. (Paris) 8, 319–374 (1973)

    ADS  Google Scholar 

  85. P. Plumelle, M. Vandevyver, Lattice dynamics of ZnTe and CdTe. Phys. Stat, Sol. 73, 271 (1976)

    Article  ADS  Google Scholar 

  86. A.S. Barker Jr., J.L. Merz, A.C. Gossard, Study of zone-folding effects on phonons in alternating monolayers of GaAs–AlAs. Phys. Rev. B 17, 3181 (1978)

    Article  ADS  Google Scholar 

  87. M. Vandevyver, D.N. Talwar, Green’s-function theory of impurity vibrations due to defect complexes in elemental and compound semiconductors. Phys. Rev. B 21, 3405 (1980)

    Article  ADS  Google Scholar 

  88. D.N. Talwar, M. Vandevyver, M. Zigone, Impurity induced Raman scattering spectra in zincblende-type crystals: application to mixed indium pnictides. J. Phys. C13, 3775 (1980)

    ADS  Google Scholar 

  89. D.N. Talwar, M. Vandevyver, K. Kunc, M. Zigone, Lattice dynamics of zinc chalcogenides under compression: phonon dispersion, mode Grüneisen, and thermal expansion. Phys Rev. B 24, 741 (1981)

    Article  ADS  Google Scholar 

  90. D.N. Talwar, M. Vandevyver, Vibrational structure of copper and zinc complexes in GaAs: a theoretical analysis. Phys. Rev. B 25, 6317 (1982)

    Article  ADS  Google Scholar 

  91. A. Kobayashi, Ph.D. thesis, Department of Physics, University of Illinois at Urbana-Champaign, 1985.

  92. T. Toriyama, N. Kobayashi, Y. Horikoshi, Lattice vibration of thin-layered AlAs-GaAs superlattices. Jpn. J. Appl. Phys. 25, 1895 (1987)

    Article  ADS  Google Scholar 

  93. G. Kanellis, New approach to the problem of lattice dynamics of modulated structures: application to superlattices. Phys. Rev. B 35, 746 (1987)

    Article  ADS  Google Scholar 

  94. S.F. Ren, H. Chu, Y.C. Chang, Anisotropy of optical phonons and interface modes in GaAs–AlAs superlattices. Phys. Rev. B 37, 8899 (1988)

    Article  ADS  Google Scholar 

  95. S.K. Yip, Y.C. Chang, Theory of phonon dispersion relations in semiconductor superlattices. Phys. Rev. B 30, 7037 (1984)

    Article  ADS  Google Scholar 

  96. D.N. Talwar, Optical and vibrational properties of Be-Zn chalcogenide alloys and superlattices. Phys. Rev B 82, 085207 (2010)

    Article  ADS  Google Scholar 

  97. D.N. Talwar, T.R. Yang, Z.C. Feng, P. Becla, Infrared reflectance and transmission spectra in II–VI alloys and superlattices. Phys. Rev. B 84, 174203 (2011)

    Article  ADS  Google Scholar 

  98. D.N. Talwar, Z.C. Feng, J.F. Lee, P. Becla, Extended x-ray absorption fine structure and micro-Raman spectra of Bridgman grown Cd1−xZnxTe ternary alloys. Mat. Res. Exp. 1, 015018–015112 (2014)

    Article  Google Scholar 

  99. D.N. Talwar, P. Becla, Infrared and Raman characteristics of bulk Cd1xMnxTe and (MnTe) m/(CdTe) n short period superlattices. Mat. Letts. 175, 279–283 (2016)

    Article  Google Scholar 

  100. A.P.G. Kutty, Phonons in mixed crystals. Solid State Commun. 14, 213–215 (1974)

    Article  ADS  Google Scholar 

  101. N. Vagelatos, D. Wehe, J.S. King, Phonon dispersion and phonon densities of states for ZnS and ZnTe. J. Chem. Phys. 60, 3613 (1974)

    Article  ADS  Google Scholar 

  102. B. Hennion, F. Moussa, G. Pepy, K. Kunc, Normal modes of vibrations in ZnSe Phys. Lett. A 36, 376 (1971)

    Article  ADS  Google Scholar 

  103. K.S. Gavrichev, G.A. Sharpataya, V.N. Guskov, J.H. Greenberg, T. Feltgen, M. Fiederle, K.W. Benz, High-temperature heat capacity and thermodynamic functions of zinc telluride Elsevier. Thermochim. Acta 381, 133 (2002)

    Article  Google Scholar 

  104. J.C. Irwin, J. LaCombe, Specific heats of ZnTe, ZnSe, and GaP. J. Appl. Phys. 45, 567 (1974)

    Article  ADS  Google Scholar 

  105. A.F. Demidenko, A.K. Maltsev, The specific heat of ZnTe, within 56–300 K: Entropy and enthalpy of ZnTe, CdS, CdSe and CdTe. Izv. Akad. Nauk SSSR Neorg. Mater. 5, 158–160 (1969)

    Google Scholar 

  106. D.N. Talwar, H.H. Lin, Assessing site selectivity of Si-Ge in GaAs by isotopic dependent vibrational modes. Mater. Sci. Eng., B 279, 115658 (2022)

    Article  Google Scholar 

  107. S. Tamura, J.P. Wolfe, Coupled-mode stop bands of acoustic phonons in semiconductor superlattices. Phys. Rev. B 35, 2528 (1987)

    Article  ADS  Google Scholar 

  108. C. Colvard, T.A. Gant, M.V. Klien, R. Merlin, R. Fischer, H. Morkoc, A.C. Gossard, Folded acoustic and quantized optic phonons in (GaAl)As superlattices. Phys. Rev. B 31, 2080 (1985)

    Article  ADS  Google Scholar 

  109. D.C. Hurley, S. Tamura, J.P. Wolfe, H. Morkoç, Imaging of acoustic phonon stop bands in superlattices. Phys. Rev. Lett. 58, 2446 (1987)

    Article  ADS  Google Scholar 

  110. R. Merlin, C. Colvard, M.V. Klien, H. Morkoc, A.Y. Cho, A.C. Gossard, Raman scattering in superlattices: anisotropy of polar phonons. Appl. Phys. Lett. 36, 43 (1980)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Dr. Deanne Snavely, Dean College of Natural Science and Mathematics at Indiana University of Pennsylvania for the travel support and the Innovation Grant that he received from the School of Graduate Studies making this research possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devki N. Talwar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talwar, D.N. Strain-induced composition-dependent phonon and thermodynamical characteristics of BeZnX chalcogenide alloys and BeX/ZnX superlattices. Eur. Phys. J. Plus 137, 1360 (2022). https://doi.org/10.1140/epjp/s13360-022-03575-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03575-w

Navigation