Skip to main content
Log in

Study of gyratonic pp-waves by using the Noether symmetry approach

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper is devoted to study the gyratonic pp-waves using the Noether symmetry approach. We consider gyratonic pp-waves that travel in the z direction with unknown profile function \(H(t,z,\rho , \phi )\) and the gyratonic source function J(tz). We evaluate velocities, kinetic energy and angular momentum of free particles for different cases of unknown metric coefficients of the spacetime. We show that the kinetic energy may decrease or increase for arbitrary choices of unknown metric coefficients of gyratonic pp-wave spacetime. The change of the kinetic energy of the free particle depends on the choices of the unknown functions under certain condition that the profile function \(H(t,z,\rho , \phi )\) should be harmonic in the Cartesian coordinates and J(tz) should be function of t and z coordinates only. We also investigate the components of angular momentum in each case and observe that the total amount of the angular momentum per unit mass of the particles decreases with time and oscillatory with the polar angle \(\phi\). Therefore, there is a transfer of energy and angular momentum between the gravitational field and the free particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

There is no data associated with the manuscript.

References

  1. D. Kramer, H. Stephani, M.A.H. MacCallum, H. Herlt, Exact Solutions of the Einstein’s Field Equations (Cambridge University Press, Cambridge, 1980)

    MATH  Google Scholar 

  2. J. Ehlers, W. Kundt, Exact Solutions of the Gravitational Field Equations, in Gravitation: an Introduction to Current Research, edited by L (Witten, New York, 1962)

    Google Scholar 

  3. P. Jordan, J. Ehlers and W. Kundt, Republication of Exact solutions of the field equations of the general theory of relativity. Gen. Relativ. Grav., 9(41), (2009)

  4. Flores, L. José, and M. Sánchez, The Ehlers-Kundt conjecture about Gravitational Waves and Dynamical Systems. J. of Differ. Eqs., 268(12) (2020)

  5. W.C. Kilminster, Gravitation-an introduction to current research. Edited by Louis Witten. John Wiley & Sons, London. 1962. 481 pp. Illustrated. 113s, Aeronauti. J. 67(630), (1963)

  6. A. Peres, Some gravitational waves, Phy. Rev. Lett.3(12) (1959)

  7. H. Bondi, F. Pirani, and I. Robinson, Gravitational waves in general relativity III. Exact Plane Waves, Proc. R. Soc. Lond. A, 251(1267), (1959)

  8. K. Andrzejewski and S. Prencel, Memory effect, conformal symmetry and gravitational plane waves, Phy. Lett. B, (782), (2018)

  9. A. Fuster, C. Pabst, and C. Pfeifer, Berwald spacetimes and very special relativity. Phy. Rev. D 98(8), (2018)

  10. K. Andrzejewski and S. Prencel, Niederer’s transformation, time-dependent oscillators and polarized gravitational waves, Clas. Quantum Gravity 36(15) (2019)

  11. J. B. Formiga, The energy-momentum tensor of gravitational waves, Wyman spacetime, and freely falling observers, Annalen. der Physik. 530(12), (2018)

  12. C. W. Misner and J. A. Wheeler, Classical physics as geometry, Ann. Phys.2(6), (1957)

  13. V. P. Frolov and D. V. Fursaev, Gravitational field of a spinning radiation beam pulse in higher dimensions, Phy. Rev. D, 71(10), (2005)

  14. V. P. Frolov, W. Israel, and A. Zelnikov, Gravitational field of relativistic gyratons, Phy. Rev. D,72(8), (2005)

  15. J. Podolsky, R. Steinbauer, and R. Svarc, Gyratonic pp-waves and their Impulsive Limit, Phy. Rev. D. 90(4), (2014)

  16. W. B. Bonnor, Charge moving with the speed of light in Einstein-Maxwell theory, Inter. Jour. of Theor. Phy. 3(1), (1970)

  17. J. B. Griffiths, Some physical properties of neutrino-gravitational fields, Inter. J. Theor. Phy. 5(3), (1972)

  18. H. W. Brinkmann, On Riemann spaces conformal to Euclidean space, Proceedings of the National Academy of Sciences of the United States of America, (1923)

  19. E. Noether, Invariant variations problems, Nachr. Konig. Gissell. Wissen., Gottingen, Math. Phys. Kl. (1918), (1918)

  20. I. Ibragimov, N. Khaĭrullovich, and N. Khaĭrullovich Ibragimov, Elementary Lie group Analysis and Ordinary Differential Equations, Vol. 197. New York: Wiley, (1999)

  21. l. Ovsiannikov, Group analysis of differential equations, Academic Press, (2014)

  22. H. Bondi, F. A. E. Pirani and I. Robinson, Gravitational waves in general relativity. III. Exact Plane Waves. Proc. Roy. Soc. Lond. A, 251(1267), (1959)

  23. A. Einstein and N. Rosen, On gravitational waves, J. Frank. Inst. 58(9), (1937)

  24. J. Ehlers and W. Kundt, Exact solutions of the gravitational field equations gravitation: an introduction to current problems, eds. L. Witten, John Wiley, (1962)

  25. S. Siddhant, I. Chakraborty, and S.Kar, Kundt geometries and memory effects in the Brans-Dicke theory of gravity, The Europ. Phys. Jour. C, 81(4), (2021)

  26. G. M. Shore, Memory, Penrose limits and the geometry of gravitational shockwaves and gyratons. J. High Energy Phys 2018(12), (2018)

  27. J. W. Maluf , J. F. da Rocha-Neto, S. C. Ulhoa and F. L. Carneiro, Energy-momentum and angular-momentum of a gyratonic pp-waves spacetime. Phys. Rev. D., 100(2), (2019)

  28. J. Maluf, J. F. da Rocha-Neto, S. C. Ulhoa, and F. L. Carneiro, Kinetic energy and angular momentum of free particles in the gyratonic pp-waves spacetimes. Clas. and Quan. Grav. 35(11), (2018)

Download references

Acknowledgements

The authors acknowledge Prof. Asghar Qadir for his useful discussions on the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrar Hussain.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Appendix A:

Appendix A:

The components of angular momentum in each case of H and J are given by Eqs. (4853)

  • Case-I (i) When \(H(t,z, \rho , \phi )= \rho \sin \phi\) or \(\rho \cos \phi\) and \(J(t,z)= t\).

    $$\begin{aligned} \begin{aligned} M_{x}&= {} \frac{e^{-\phi /2} z \rho \cos \phi \left( -\rho f(\phi ) -2 \rho _0+2 e^{\phi /2} \rho _0\right) }{4t \rho _0} +\sin \phi \left( \frac{1}{4} e^{-\phi /2} \rho -A\right) ,\\ M_{y}&= {} \frac{e^{-\phi /2} z \rho \sin \phi \left( -\rho f(\phi ) -2 \rho _0+2 e^{\phi /2} \rho _0\right) }{4t \rho _0} -\cos \phi \left( \frac{1}{4} e^{-\phi /2} \rho -A\right) ,\\ M_{z}&= -\frac{e^{-\phi /2} \rho ^2 \left( -\rho f(\phi )-2 \rho _0+2 e^{\phi /2} \rho _0\right) }{4 t \rho _0},\\ \end{aligned} \end{aligned}$$
    (48)

    where \(A=\frac{z \sqrt{e^{-\phi } \left( -\rho ^4 \sin \phi ^2+\rho \left( t^2+4 \left( -1+e^{\phi /2}\right) \rho ^2\right) \sin \phi \rho _0+2 \left( t^2-2 \rho ^2-2 e^{\phi /2} \left( t^2-2 \rho ^2\right) +2 e^{\phi } \left( -4 t^2-\rho ^2\right) \right) \rho _0^2\right) }}{4 t \rho _0}.\)

  • Case-I (ii) When \(H(t,z, \rho , \phi )= \rho (\cos \phi +\sin \phi )\) and \(J(t,z)= t\)

    $$\begin{aligned} \begin{aligned} M_{x}&= -\frac{e^{-\phi /2} \rho \cos \phi \left( \rho \cos \phi +2 e^{\phi /2} \rho _0\right) }{4 \rho _0}+\sin \phi \left( \frac{1}{4} e^{-\phi /2} \rho -B\right) ,\\ M_{y}&=-\frac{e^{-\phi /2} \rho \sin \phi \left( \rho \cos \phi +2 e^{\phi /2} \rho _0\right) }{4 \rho _0}-\cos \phi \left( \frac{1}{4} e^{-\phi /2} \rho -B\right) ,\\ M_{z}&= \frac{e^{-\phi /2} \rho ^2 \left( \rho \cos \phi +2 e^{\phi /2} \rho _0\right) }{4 z \rho _0},\\ \end{aligned} \end{aligned}$$
    (49)

    where \(B=\frac{\sqrt{-e^{-\phi } \rho ^4 \cos \phi ]^2+e^{-\phi } z^2 \rho \cos \phi \rho _0-4 e^{-\phi /2} \rho ^3 \cos \phi \rho _0-16 z^2 \rho _0^2-2 e^{-\phi } z^2 \rho _0^2+4 e^{-\phi /2} z^2 \rho _0^2-4 \rho ^2 \rho _0^2}}{4 \rho _0}.\)

  • Case-I (iii)When \(H(t,z, \rho , \phi )= \rho ^{2}(\cos \phi ^{2}-\sin \phi ^{2})~ \text {and}~ J(t,z)= t.\)

    $$\begin{aligned} \begin{aligned} M_{x}&= -z \rho \cos \phi {\dot{\phi }}+\sin \phi \left( \frac{1}{4} e^{-\phi /2} \rho -C\right) ,\\ M_{y}&={-\frac{e^{-\phi /2} z \rho \sin \phi \left( -\rho \cos \phi -\rho \sin \phi -2 \rho _0+2 e^{\phi /2} \rho _0\right) }{4 t \rho _0}+} \cos \phi \left( -\frac{1}{4} e^{-\phi /2} \rho +C\right) ,\\ M_{z}&=\frac{e^{-\phi /2} \rho ^2 \left( -\rho \cos \phi -\rho \sin \phi -2 \rho _0+2 e^{\phi /2} \rho _0\right) }{4 t \rho _0},\\ \end{aligned} \end{aligned}$$
    (50)

    where \(C=\frac{e^{-\phi /2} z \sqrt{\rho ^4 (1+\sin 2 \phi )+\rho \left( 3 t^2-4 \left( -1+e^{\phi /2}\right) \rho ^2\right) (\cos \phi +\sin \phi ) \rho _0+2 \left( \left( 3-2 e^{\phi /2}+8 e^{\phi }\right) t^2+2 \left( -1+e^{\phi /2}\right) ^2 \rho ^2\right) \rho _0^2}}{4 t \rho _0}\)

  • Case-II (i) When \(H(t,z, \rho , \phi )= \rho \sin \phi\) or \(\rho \cos \phi\) and \(J(t,z)= z\).

    $$\begin{aligned} \begin{aligned} M_{x}&=-\frac{e^{-\phi /2} \rho \cos \phi \left( \rho ^2 f(\phi )+2 e^{\phi /2} \rho _0^2\right) }{4 \rho _0^2}+\sin \phi \left( \frac{1}{4} e^{-\phi /2} \rho -D\right) ,\\ M_{y}&=-\frac{e^{-\phi /2} \rho \sin \phi \left( \rho ^2 f(\phi )+2 e^{\phi /2} \rho _0^2\right) }{4 \rho _0^2}+\text {Cos}[\phi ] \left( -\frac{1}{4} e^{-\phi /2} \rho +D\right) ,\\ M_{z}&=\frac{e^{-\phi /2} \rho ^2 \left( \rho ^2 f(\phi )+2 e^{\phi /2} \rho _0^2\right) }{4 z \rho _0^2},\\ \end{aligned} \end{aligned}$$
    (51)

    where \(D= \frac{\sqrt{e^{-\phi } \left( -\rho ^6 \cos 2 \phi ^2+\rho ^2 \left( z^2-4 e^{\phi /2} \rho ^2\right) \cos 2 \phi \rho _0^2-2 \left( \left( 1-2 e^{\phi /2}+8 e^{\phi }\right) z^2+2 e^{\phi } \rho ^2\right) \rho _0^4\right) }}{4 \rho _0^2}.\)

  • Case-II (ii) When \(H(t,z, \rho , \phi )=\rho ^{2}(\cos \phi ^{2}-\sin \phi ^{2})\) and \(J(t,z)= z.\)

    $$\begin{aligned} \begin{aligned} M_{x}&= \frac{e^{-\phi /2} z \rho \cos \phi \left( -\rho ^2 \cos 2 \phi -2 \rho _0^2+2 e^{\phi /2} \rho _0^2\right) }{4 t \rho _0^2}+\sin \phi \left( \frac{1}{4} e^{-\phi /2} \rho -E\right) ,\\ M_{y}&= \frac{e^{-\phi /2} z \rho \sin \phi \left( -\rho ^2 \cos 2 \phi -2 \rho _0^2+2 e^{\phi /2} \rho _0^2\right) }{4 t \rho _0^2}+\cos \phi \left( -\frac{1}{4} e^{-\phi /2} \rho +E\right) ,\\ M_{z}&= -\frac{e^{-\phi /2} \rho ^2 \left( -\rho ^2 \cos 2 \phi -2 \rho _0^2+2 e^{\phi /2} \rho _0^2\right) }{4 t \rho _0^2}, \end{aligned} \end{aligned}$$
    (52)

    where \(E= \frac{e^{-\phi /2} z \sqrt{\rho ^6 \cos 2 \phi ^2-\rho ^2 \left( t^2+4 \left( -1+e^{\phi /2}\right) \rho ^2\right) \cos 2 \phi \rho _0^2+2 \left( \left( -1+2 e^{\phi /2}+8 e^{\phi }\right) t^2+2 \left( -1+e^{\phi /2}\right) ^2 \rho ^2\right) \rho _0^4}}{4 t \rho _0^2}.\)

  • Case-III When, \(H(t,z, \rho , \phi )= \ln ( \frac{\rho }{\rho _{0}})^2,~ J(t,z)= t.\)

    $$\begin{aligned} \begin{aligned} M_{x}&= -\frac{e^{-\phi /2} \left( 2 e^{\phi /2}+t\right) z \cos \phi }{4 \rho }+\left( \frac{1}{4} e^{-\phi /2} \rho -\frac{e^{-\phi /2} z \sqrt{4 e^{\phi }-t^2+2 \rho ^2+16 e^{\phi } \rho ^2+\rho ^2 \ln \left[ \frac{\rho ^2}{\rho _0^2}\right] }}{4 \rho }\right) \sin \phi \\ M_{y}&= \cos \phi \left( -\frac{1}{4} e^{-\phi /2} \rho +\frac{e^{-\phi /2} z \sqrt{4 e^{\phi }-t^2+2 \rho ^2+16 e^{\phi } \rho ^2+\rho ^2 \ln \left[ \frac{\rho ^2}{\rho _0^2}\right] }}{4 \rho }\right) -\frac{e^{-\phi /2} \left( 2 e^{\phi /2}+t\right) z \sin \phi }{4 \rho }\\ M_{z}&=\frac{1}{4} e^{-\phi /2} \left( 2 e^{\phi /2}+t\right) \end{aligned} \end{aligned}$$
    (53)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, K.Q., Hussain, I. Study of gyratonic pp-waves by using the Noether symmetry approach. Eur. Phys. J. Plus 137, 1359 (2022). https://doi.org/10.1140/epjp/s13360-022-03567-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03567-w

Navigation