Skip to main content
Log in

Noncommutative inspired 5D charged black hole in Einstein–Gauss–Bonnet theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This work is devoted to obtaining a five-dimensional charged black hole solution with a static spherically symmetric geometry inspired by a noncommutative geometry, where noncommutativity is implemented only through a Gaussian de-localization of mass and charge sources in Einstein–Gauss–Bonnet gravity. The thermodynamic properties of this black hole were investigated to discover how the charge affected the various parameters as well as the black hole’s stability. Further, with the help of null geodesics and the Hamiltonian–Jacobi approach, the shadow radius is calculated. This allows us to investigate the shadow cast by the corresponding black hole. Concretely, it has been shown that, for a fixed value of the mass parameter, the shadow has a circular shape where its size decreases with an increase in electric charge Q, noncommutativity parameter \(\varTheta\) and GB coupling constant \(\alpha\). Finally, we check the effect of the previous parameters on the energy emission rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

No Data associated in the manuscript.

References

  1. E. Asmodelle, arXiv:1705.04397 [gr-qc]

  2. M. Ishak, Living Rev. Rel. 22(1), 1 (2019). https://doi.org/10.1007/s41114-018-0017-4

    Article  Google Scholar 

  3. S.W. Hawking, Black holes in general relativity. Commun. Math. Phys. 25, 152 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  4. J.M. Bardeen, B. Carter, S.W. Hawking, The Four laws of black hole mechanics. Commun. Math. Phys. 31, 161 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Hawking, D.N. Page, Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys. 83, 577 (1987)

    MathSciNet  Google Scholar 

  7. R.M. Wald, The thermodynamics of black holes. Living Rev. Rel. 4, 6 (2001)

    Article  MATH  Google Scholar 

  8. E. Spallucci, A. Smailagic, P. Nicolini, Phys. Lett. B 670, 449–454 (2009). https://doi.org/10.1016/j.physletb.2008.11.030

    Article  ADS  MathSciNet  Google Scholar 

  9. P. Nicolini, A. Smailagic, E. Spallucci, Phys. Lett. B 632, 547–551 (2006). https://doi.org/10.1016/j.physletb.2005.11.004

    Article  ADS  MathSciNet  Google Scholar 

  10. T.G. Rizzo, JHEP 09, 021 (2006). https://doi.org/10.1088/1126-6708/2006/09/021

    Article  ADS  Google Scholar 

  11. K. Nozari, S.H. Mehdipour, Commun. Theor. Phys. 53, 503–5131 (2010). https://doi.org/10.1088/0253-6102/53/3/20

    Article  ADS  Google Scholar 

  12. T. Toghrai, N. Mansour, A. Daoudia, A. Boukili, M.B. Sedra, Eur. Phys. J. Plus 136(3), 291 (2021). https://doi.org/10.1140/epjp/s13360-021-01226-0

    Article  Google Scholar 

  13. T. Toghrai, N. Mansour, A.K. Daoudia, A. El Boukili, M.B. Sedra, The impact of deformed space-space parameters into canonical scalar field model with exponential potential: The case of spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) universe. Int. J. Mod. Phys. A 36(18), 2150138 (2021)

    Article  ADS  Google Scholar 

  14. A. Connes, Noncommutative Geometry, vol. 102 (Academic Press, New York, 1994)

    MATH  Google Scholar 

  15. A. Connes, Commun. Math. Phys. 182, 155 (1996)

    Article  ADS  Google Scholar 

  16. W. Pauli, Letter of Heisenberg to Peierls (1930), in K. von Meyenn (ed.) Scientific Correspondence, vol. II. 93, p. 15 (Springer, 1985)

  17. P. Nicolini, Int. J. Mod. Phys. A 24, 1229–1308 (2009). https://doi.org/10.1142/S0217751X09043353

    Article  ADS  Google Scholar 

  18. D. Lovelock, J. Math. Phys. 12, 498 (1971)

    Article  ADS  Google Scholar 

  19. C. Lanczos, Ann. Math. 39, 842 (1938)

    Article  MathSciNet  Google Scholar 

  20. D.G. Boulware, S. Deser, Phys. Rev. Lett. 55, 2656 (1985)

    Article  ADS  Google Scholar 

  21. J.T. Wheeler, Nucl. Phys. B 268, 737–746 (1986). https://doi.org/10.1016/0550-3213(86)90268-3

    Article  ADS  Google Scholar 

  22. D.L. Wiltshire, Phys. Lett. B 169, 36–40 (1986). https://doi.org/10.1016/0370-2693(86)90681-7

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Cvetic, S. Nojiri, S.D. Odintsov, Nucl. Phys. B 628, 295–330 (2002). https://doi.org/10.1016/S0550-3213(02)00075-5

    Article  ADS  Google Scholar 

  24. I.P. Neupane, JHEP 9, 40 (2000). https://doi.org/10.1088/1126-6708/2000/09/040

    Article  ADS  MathSciNet  Google Scholar 

  25. I.P. Neupane, Phys. Lett. B 512, 137–145 (2001). https://doi.org/10.1016/S0370-2693(01)00589-5

    Article  ADS  MathSciNet  Google Scholar 

  26. I.P. Neupane, Class. Quant. Grav. 19, 5507–5523 (2002). https://doi.org/10.1088/0264-9381/19/21/315

    Article  ADS  MathSciNet  Google Scholar 

  27. C. Sahabandu, P. Suranyi, C. Vaz, L.C.R. Wijewardhana, Phys. Rev. D 73, 044009 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  28. A. Belhaj, K. Bilal, A. El Boukili, M. Nach, M.B. Sedra, Int. J. Geom. Meth. Mod. Phys. 10, 1350009 (2013). https://doi.org/10.1142/S0219887813500096

    Article  Google Scholar 

  29. F.-L. Julié, E. Berti, Post-Newtonian dynamics and black hole thermodynamics in Einstein–Scalar–Gauss–Bonnet gravity. Phys. Rev. D 100, 104061 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  30. A. Belhaj, M. Chabab, H. El Moumni, K. Masmar, M.B. Sedra, Maxwell’s equal-area law for Gauss–Bonnet–Anti-de Sitter black holes. Eur. Phys. J. C 75(2), 71 (2015)

    Article  ADS  Google Scholar 

  31. The Event Horizon Telescope. www.eventhorizontelescope.org

  32. J.M. Bardeen, Black holes, in Proceeding of the Les Houches Summer School, Session 215239. ed. by C. De Witt, B.S. De Witt, B.S. De Witt (Gordon and Breach, New York, 1973)

    Google Scholar 

  33. J.L. Synge, Mon. Not. R. Astron. Soc. 131, 463 (1966)

    Article  ADS  Google Scholar 

  34. J.P. Luminet, Astron. Astrophys. 75, 228 (1979)

    ADS  Google Scholar 

  35. S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford University Press, New York, 1992)

    MATH  Google Scholar 

  36. H. Falcke, F. Melia, E. Agol, Astrophys. J. 528, L13 (2000)

    Article  ADS  Google Scholar 

  37. S.W. Wei, Y.C. Zou, Y.X. Liu, R.B. Mann, Curvature radius and Kerr black hole shadow. JCAP 08, 030 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. A. Övgün, I. Sakalli, J. Saavedra, Shadow cast and Deflection angle of Kerr–Newman–Kasuya spacetime. JCAP 10, 041 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. R.A. Konoplya, T. Pappas, A. Zhidenko, Einstein–Scalar–Gauss–Bonnet black holes: analytical approximation for the metric and applications to calculations of shadows. Phys. Rev. D 101, 044054 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  40. E. Gallo, J.R. Villanueva, Photon spheres in Einstein and Einstein–Gauss–Bonnet theories and circular null geodesics in axially-symmetric spacetimes. Phys. Rev. D 92, 064048 (2015)

    Article  ADS  Google Scholar 

  41. A. Das, A. Saha, S. Gangopadhyay, Shadow of charged black holes in Gauss–Bonnet gravity. Eur. Phys. J. C 80, 180 (2020). https://doi.org/10.1140/epjc/s10052-020-7726-z

    Article  ADS  Google Scholar 

  42. S.G. Ghosh, M. Amir, S.D. Maharaj, Quintessence background for 5D Einstein–Gauss–Bonnet black holes. Eur. Phys. J. C 77(8), 1–9 (2017)

    Article  Google Scholar 

  43. E. Witten, Nucl. Phys. B 268, 253 (1986)

    Article  ADS  Google Scholar 

  44. N. Seiberg, E. Witten, JHEP 9909, 032 (1999)

    Article  ADS  Google Scholar 

  45. A.A. Tseytlin, Nucl. Phys. B 467, 383–398 (1996). https://doi.org/10.1016/0550-3213(96)00080-6

    Article  ADS  Google Scholar 

  46. N. Mansour, E. Diaf, M.B. Sedra, J. Phys. Stud. 23(1), 1103 (2019). https://doi.org/10.30970/jps.23.1103

    Article  Google Scholar 

  47. G.T. Horowitz, T. Wiseman, arXiv:1107.5563 [gr-qc]

  48. A.F. Zakharov, F. De Paolis, G. Ingrosso, A.A. Nucita, New Astron. Rev. 56, 64–73 (2012). https://doi.org/10.1016/j.newar.2011.09.002

    Article  ADS  Google Scholar 

  49. R.G. Cai, Phys. Lett. B 582, 237–242 (2004). https://doi.org/10.1016/j.physletb.2004.01.015

    Article  ADS  MathSciNet  Google Scholar 

  50. S.G. Ghosh, Class. Quant. Grav. 35(8), 085008 (2018). https://doi.org/10.1088/1361-6382/aaaead

    Article  ADS  Google Scholar 

  51. C. Sahabandu, P. Suranyi, C. Vaz, L.C.R. Wijewardhana, Phys. Rev. D 73, 044009 (2006). https://doi.org/10.1103/PhysRevD.73.044009. [arXiv:gr-qc/0509102 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  52. A. Belhaj, Y. Sekhmani, Gen. Rel. Grav. 54(2), 17 (2022). https://doi.org/10.1007/s10714-022-02902-x

    Article  ADS  Google Scholar 

  53. A. Belhaj, H. Belmahi, M. Benali, W. El Hadri, H. El Moumni, E. Torrente-Lujan, Phys. Lett. B 812, 136025 (2021). https://doi.org/10.1016/j.physletb.2020.136025. [arXiv:2008.13478 [hep-th]]

    Article  Google Scholar 

  54. B.P. Singh, S.G. Ghosh, Ann. Phys. 395, 127–137 (2018). https://doi.org/10.1016/j.aop.2018.05.010

    Article  ADS  Google Scholar 

  55. J.A.V. Campos, M.A. Anacleto, F.A. Brito, E. Passos, Sci. Rep. 12(1), 8516 (2022). https://doi.org/10.1038/s41598-022-12343-w

    Article  ADS  Google Scholar 

  56. A. Belhaj, Y. Sekhmani, Ann. Phys. 441, 168863 (2022). https://doi.org/10.1016/j.aop.2022.168863

    Article  Google Scholar 

  57. M. Khodadi, E.N. Saridakis, Phys. Dark Univ. 32, 100835 (2021). https://doi.org/10.1016/j.dark.2021.100835

    Article  Google Scholar 

  58. M. Khodadi, A. Allahyari, S. Vagnozzi, D.F. Mota, JCAP 9, 26 (2020). https://doi.org/10.1088/1475-7516/2020/09/026

    Article  ADS  Google Scholar 

  59. S.W. Wei, Y.X. Liu, JCAP 11, 63 (2013). https://doi.org/10.1088/1475-7516/2013/11/063

    Article  ADS  Google Scholar 

  60. D. Glavan, C. Lin, Phys. Rev. Lett. 124(8), 081301 (2020). https://doi.org/10.1103/PhysRevLett.124.081301

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the anonymous referees for their informative remarks and suggestions for enhancing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Mansour.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lekbich, H., El Boukili, A., Mansour, N. et al. Noncommutative inspired 5D charged black hole in Einstein–Gauss–Bonnet theory. Eur. Phys. J. Plus 137, 1339 (2022). https://doi.org/10.1140/epjp/s13360-022-03531-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03531-8

Navigation