Skip to main content
Log in

Uniform regularity for a two-phase model with magnetic field

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper proves the uniform regularity of strong solutions to a two-phase model with magnetic field, which plays an important role in the vanishing viscosity limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no data sets were generated or analysed during the current study.

References

  1. J. Fan, W. Yu, Strong solution to the compressible magnetohydrodynamic equations with vacuum. Nonlinear Anal. Real World Appl. 10, 392–409 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Y.F. Wang, Mass concentration phenomenon to the two-dimensional Cauchy problem of the compressible magnetohydrodynamic equations. Commun. Pure Appl. Anal. 19, 4973–4994 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Y.F. Wang, A Beale–Kato–Majda criterion for three dimensional compressible viscous non-isentropic magnetohydrodynamic flows without heat-conductivity. J. Differ. Equ. 280, 66–98 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. J. Fan, L. Jing, G. Nakamura, T. Tang, Global solutions of the 3D compressible MHD system in a bounded domain. Dyn. Part. Differ. Equ. 17, 61–73 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Gong, J. Li, X. Liu, X. Zhang, Local well-posedness of isentropic compressible Navier–Stokes equations with vacuum. Commun. Math. Sci. 18, 1891–1909 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. X. Huang, On local strong and classical solutions to the three-dimensional barotropic compressible Navier–Stokes equations with vacuum. Sci. China Math. 64, 1771–1788 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. J.A. Carrillo, T. Goudon, Stability and asymptotic analysis of a fluid–particle interaction model. Commun. Part. Differ. Equ. 31, 1349–1379 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Vasseur, H.Y. Wen, C. Yu, Global weak solution to the viscous two-phase model with finite energy. J. Math. Pures Appl. 125, 247–282 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Novotný, M. Pokorný, Weak solutions for some compressible multicomponent fluid models. Arch. Ration. Mech. Anal. 235, 355–403 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Jin, Y.-S. Kwon, S. Nečasová, A. Novotný, Existence and stability of dissipative turbulent solutions to a simple bi-fluid model of compressible fluids. J. Elliptic Parabol. Equ. 7, 537–570 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Feireisl, H. Petzeltová, K. Trivisa, Multicomponent reactive flows: global-in-time existence for large data. Commun. Pure Appl. Anal. 7, 1017–1047 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Kracmar, Y.-S. Kwon, S. Nečasová, A. Novotný, Weak solutions for a bi-fluid model for a mixture of two compressible non interacting fluids with general boundary data. SIAM J. Math. Anal. 54, 818–871 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. Y.-S. Kwon, Convergence of the flow of a chemically reacting gaseous mixture to incompressible Euler equations in a unbounded domain. Z. Angew. Math. Phys. 68, 16 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Mellet, A. Vasseur, Asymptotic analysis for a Vlasov–Fokker-Planck/compressible Navier–Stokes system of equations. Commun. Math. Phys. 281, 573–596 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. P.B. Mucha, M. Pokorný, E. Zatorska, Heat-conducting, compressible mixtures with multicomponent diffusion: construction of a weak solution. SIAM J. Math. Anal. 47, 3747–3797 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. P.B. Mucha, M. Pokorný, E. Zatorska, Chemically reacting mixtures in terms of degenerated parabolic setting. J. Math. Phys. 54, 17 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. P.B. Mucha, M. Pokorný, E. Zatorska, Approximate solutions to a model of two-component reactive flow. Discrete Contin. Dyn. Syst. Ser. S 7, 1079–1099 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Wen, L. Zhu, Global well-posedness and decay estimates of strong solutions to a two-phase model with magnetic field. J. Differ. Equ. 264, 2377–2406 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. L. Ma, B. Guo, J. Shao, Global weak solutions to some two-fluid models with magnetic field. arXiv:2103.08344

  20. N. Masmoudi, F. Rousset, Uniform regularity for the Navier–Stokes equation with Navier boundary condition. Arch Ration. Mech. Anal. 203, 529–575 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Li, J. Wang, Uniform regularity estimates of solutions to three dimensional incompressible magnetic Bénard equations with Navier-slip type boundary conditions in half space. Nonlinear Anal. 199, 111932 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Z.P. Zhang, Uniform regularity and vanishing viscosity limit for the chemotaxis-Navier–Stokes system in a 3D bounded domain. Math. Methods Appl. Sci. 40, 7564–7597 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. T. Alazard, Low Mach number limit of the full Navier–Stokes equations. Arch. Ration. Mech. Anal. 180, 1–73 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Metivier, S. Schochet, The incompressible limit of the non-isentropic Euler equations. Arch. Ration. Mech. Anal. 158, 61–90 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Kato, G. Ponce, Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables (Springer, New York, 1984)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees and the editors whose comments and suggestions greatly improved the presentation of this paper. Jishan Fan is partially supported by NSFC Grant No. 11971234. Tong Tang is partially supported by NSF of Jiangsu Province Grant No. BK20221369.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Tang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J., Nakamura, G. & Tang, T. Uniform regularity for a two-phase model with magnetic field. Eur. Phys. J. Plus 137, 1279 (2022). https://doi.org/10.1140/epjp/s13360-022-03490-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03490-0

Navigation