Skip to main content
Log in

Extracting the jet transport coefficient from hadron suppressions by confronting current NLO parton fragmentation functions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Nuclear modification factors of single hadrons and dihadrons at large transverse momentum (\(p_{\mathrm{T}}\)) in high-energy heavy-ion collisions are studied in a next-to-leading-order (NLO) perturbative QCD parton model. Parton fragmentation functions (FFs) in \(A+A\) collisions are modified due to jet energy loss which is proportional to the jet transport coefficient \(\hat{q}\) characterizing the interaction between the parton jet and the produced medium. By confronting 6 current sets of NLO parton FFs for large \(p_{\mathrm{T}}\) hadron productions, we extract \(\hat{q}\) quantitatively via a global fit to data for both single hadron and dihadron suppressions and obtain \(\hat{q}/T^3 = 4.74 - 6.72\) at \(T = 370\) MeV in central \(Au+Au\) collisions at \(\sqrt{s_{\mathrm{NN}}}=200\) GeV, and \(\hat{q}/T^3 = 3.07 - 3.98\) at \(T = 480\) MeV in central \(Pb+Pb\) collisions at \(\sqrt{s_{\mathrm{NN}}}=2.76\) TeV. The numerical results show that the uncertainties for \(\hat{q}\) extraction are brought by the different contributions of gluon-to-hadron in the six sets of FFs due to gluon energy loss being 9/4 times of quark energy loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. The data for generating figures in this work can be provided upon request.

References

  1. A. Adare et al., PHENIX. Phys. Rev. Lett. 101, 232301 (2008). https://doi.org/10.1103/PhysRevLett.101.232301

    Article  ADS  Google Scholar 

  2. A. Adare et al., PHENIX. Phys. Rev. C 87, 034911 (2013). https://doi.org/10.1103/PhysRevC.87.034911

    Article  ADS  Google Scholar 

  3. A. Adare et al., PHENIX. Phys. Rev. Lett. 105, 142301 (2010). https://doi.org/10.1103/PhysRevLett.105.142301

    Article  ADS  Google Scholar 

  4. B. Abelev et al., ALICE. Phys. Lett. B 720, 52 (2013). https://doi.org/10.1016/j.physletb.2013.01.051

    Article  ADS  Google Scholar 

  5. S. Chatrchyan et al., CMS. Eur. Phys. J. C 72, 1945 (2012). https://doi.org/10.1140/epjc/s10052-012-1945-x

    Article  ADS  Google Scholar 

  6. S. Acharya et al., ALICE. JHEP 11, 013 (2018). https://doi.org/10.1007/JHEP11(2018)013

    Article  ADS  Google Scholar 

  7. V. Khachatryan et al., CMS. JHEP 04, 039 (2017). https://doi.org/10.1007/JHEP04(2017)039

    Article  ADS  Google Scholar 

  8. S. Acharya et al., ALICE. Phys. Lett. B 788, 166 (2019). https://doi.org/10.1016/j.physletb.2018.10.052

    Article  ADS  Google Scholar 

  9. M. Gyulassy, M. Plumer, Phys. Lett. B 243, 432 (1990). https://doi.org/10.1016/0370-2693(90)91409-5

    Article  ADS  Google Scholar 

  10. X.-N. Wang, M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992). https://doi.org/10.1103/PhysRevLett.68.1480

    Article  ADS  Google Scholar 

  11. G.-Y. Qin, X.-N. Wang, Int. J. Mod. Phys. E 24, 1530014 (2015). https://doi.org/10.1142/S0218301315300143

    Article  ADS  Google Scholar 

  12. H. Zhang, J.F. Owens, E. Wang, X.-N. Wang, Phys. Rev. Lett. 98, 212301 (2007). https://doi.org/10.1103/PhysRevLett.98.212301

    Article  ADS  Google Scholar 

  13. R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne, D. Schiff, Nucl. Phys. B 484, 265 (1997). https://doi.org/10.1016/S0550-3213(96)00581-0

    Article  ADS  Google Scholar 

  14. K.M. Burke et al., JET. Phys. Rev. C 90, 014909 (2014). https://doi.org/10.1103/PhysRevC.90.014909

    Article  ADS  Google Scholar 

  15. Z.-Q. Liu, H. Zhang, B.-W. Zhang, E. Wang, Eur. Phys. J. C 76, 20 (2016). https://doi.org/10.1140/epjc/s10052-016-3885-3

    Article  ADS  Google Scholar 

  16. X.-F. Chen, C. Greiner, E. Wang, X.-N. Wang, Z. Xu, Phys. Rev. C 81, 064908 (2010). https://doi.org/10.1103/PhysRevC.81.064908

    Article  ADS  Google Scholar 

  17. X.-F. Chen, T. Hirano, E. Wang, X.-N. Wang, H. Zhang, Phys. Rev. C 84, 034902 (2011). https://doi.org/10.1103/PhysRevC.84.034902

    Article  ADS  Google Scholar 

  18. H. Zhang, J.F. Owens, E. Wang, X.-N. Wang, Phys. Rev. Lett. 103, 032302 (2009). https://doi.org/10.1103/PhysRevLett.103.032302

    Article  ADS  Google Scholar 

  19. M. Xie, S.-Y. Wei, G.-Y. Qin, H.-Z. Zhang, Eur. Phys. J. C 79, 589 (2019). https://doi.org/10.1140/epjc/s10052-019-7100-1

    Article  ADS  Google Scholar 

  20. M. Xie, X.-N. Wang, H.-Z. Zhang, Phys. Rev. C 103, 034911 (2021). https://doi.org/10.1103/PhysRevC.103.034911

    Article  ADS  Google Scholar 

  21. X. Feal, C.A. Salgado, R.A. Vazquez, Phys. Lett. B 816, 136251 (2021). https://doi.org/10.1016/j.physletb.2021.136251

    Article  Google Scholar 

  22. F.-L. Liu, W.-J. Xing, X.-Y. Wu, G.-Y. Qin, S. Cao, X.-N. Wang, Eur. Phys. J. C 82, 350 (2022). https://doi.org/10.1140/epjc/s10052-022-10308-x

    Article  ADS  Google Scholar 

  23. S. Cao et al., JETSCAPE. Phys. Rev. C 104, 024905 (2021). https://doi.org/10.1103/PhysRevC.104.024905

    Article  ADS  Google Scholar 

  24. D. d’Enterria, K.J. Eskola, I. Helenius, H. Paukkunen, Nucl. Phys. B 883, 615 (2014). https://doi.org/10.1016/j.nuclphysb.2014.04.006

    Article  ADS  Google Scholar 

  25. W.-T. Deng, X.-N. Wang, Phys. Rev. C 81, 024902 (2010). https://doi.org/10.1103/PhysRevC.81.024902

    Article  ADS  Google Scholar 

  26. S. Kretzer, Phys. Rev. D 62, 054001 (2000). https://doi.org/10.1103/PhysRevD.62.054001

    Article  ADS  Google Scholar 

  27. B.A. Kniehl, G. Kramer, B. Potter, Nucl. Phys. B 582, 514 (2000). https://doi.org/10.1016/S0550-3213(00)00303-5

    Article  ADS  Google Scholar 

  28. L. Bourhis, M. Fontannaz, J.P. Guillet, M. Werlen, Eur. Phys. J. C 19, 89 (2001). https://doi.org/10.1007/s100520100579

    Article  ADS  Google Scholar 

  29. M. Hirai, S. Kumano, T.H. Nagai, K. Sudoh, Phys. Rev. D 75, 094009 (2007). https://doi.org/10.1103/PhysRevD.75.094009

    Article  ADS  Google Scholar 

  30. S. Albino, B.A. Kniehl, G. Kramer, Nucl. Phys. B 803, 42 (2008). https://doi.org/10.1016/j.nuclphysb.2008.05.017

    Article  ADS  Google Scholar 

  31. D. de Florian, R. Sassot, M. Stratmann, Phys. Rev. D 75, 114010 (2007). https://doi.org/10.1103/PhysRevD.75.114010

    Article  ADS  Google Scholar 

  32. D. de Florian, R. Sassot, M. Stratmann, Phys. Rev. D 76, 074033 (2007). https://doi.org/10.1103/PhysRevD.76.074033

    Article  ADS  Google Scholar 

  33. X.-N. Wang, Z. Huang, I. Sarcevic, Phys. Rev. Lett. 77, 231 (1996). https://doi.org/10.1103/PhysRevLett.77.231

    Article  ADS  Google Scholar 

  34. X.-N. Wang, Z. Huang, Phys. Rev. C 55, 3047 (1997). https://doi.org/10.1103/PhysRevC.55.3047

    Article  ADS  Google Scholar 

  35. X.-N. Wang, Phys. Rev. C 70, 031901 (2004). https://doi.org/10.1103/PhysRevC.70.031901

    Article  ADS  Google Scholar 

  36. E. Wang, X.-N. Wang, Phys. Rev. Lett. 87, 142301 (2001). https://doi.org/10.1103/PhysRevLett.87.142301

    Article  ADS  Google Scholar 

  37. E. Wang, X.-N. Wang, Phys. Rev. Lett. 89, 162301 (2002). https://doi.org/10.1103/PhysRevLett.89.162301

    Article  ADS  Google Scholar 

  38. J.F. Owens, Rev. Mod. Phys. 59, 465 (1987). https://doi.org/10.1103/RevModPhys.59.465

    Article  ADS  Google Scholar 

  39. R. Brock et al., CTEQ. Rev. Mod. Phys. 67, 157 (1995). https://doi.org/10.1103/RevModPhys.67.157

    Article  ADS  Google Scholar 

  40. T.-J. Hou, S. Dulat, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, C.P. Yuan, Phys. Rev. D 95, 034003 (2017). https://doi.org/10.1103/PhysRevD.95.034003

    Article  ADS  Google Scholar 

  41. N. Kidonakis, J.F. Owens, Phys. Rev. D 63, 054019 (2001). https://doi.org/10.1103/PhysRevD.63.054019

    Article  ADS  Google Scholar 

  42. B.W. Harris, J.F. Owens, Phys. Rev. D 65, 094032 (2002). https://doi.org/10.1103/PhysRevD.65.094032

    Article  ADS  Google Scholar 

  43. P. Jacobs, G. Cooper, ( 2000), arXiv:nucl-ex/0008015

  44. X.-N. Wang, Phys. Rep. 280, 287 (1997). https://doi.org/10.1016/S0370-1573(96)00022-1

    Article  ADS  Google Scholar 

  45. S.-Y. Li, X.-N. Wang, Phys. Lett. B 527, 85 (2002). https://doi.org/10.1016/S0370-2693(02)01179-6

    Article  ADS  Google Scholar 

  46. V. Emel’yanov, A. Khodinov, S.R. Klein, R. Vogt, Phys. Rev. C 61, 044904 (2000). https://doi.org/10.1103/PhysRevC.61.044904

    Article  ADS  Google Scholar 

  47. T. Hirano, Y. Nara, Phys. Rev. C 69, 034908 (2004). https://doi.org/10.1103/PhysRevC.69.034908

    Article  ADS  Google Scholar 

  48. K.J. Eskola, P. Paakkinen, H. Paukkunen, C.A. Salgado, Eur. Phys. J. C 77, 163 (2017). https://doi.org/10.1140/epjc/s10052-017-4725-9

    Article  ADS  Google Scholar 

  49. K.J. Eskola, P. Paakkinen, H. Paukkunen, C.A. Salgado, Eur. Phys. J. C 82, 413 (2022). https://doi.org/10.1140/epjc/s10052-022-10359-0

    Article  ADS  Google Scholar 

  50. T.-J. Hou et al., Phys. Rev. D 103, 014013 (2021). https://doi.org/10.1103/PhysRevD.103.014013

    Article  ADS  Google Scholar 

  51. N.-B. Chang, W.-T. Deng, X.-N. Wang, Phys. Rev. C 89, 034911 (2014). https://doi.org/10.1103/PhysRevC.89.034911

    Article  ADS  Google Scholar 

  52. T. Hirano, Phys. Rev. C 65, 011901 (2002). https://doi.org/10.1103/PhysRevC.65.011901

    Article  ADS  Google Scholar 

  53. T. Hirano, K. Tsuda, Phys. Rev. C 66, 054905 (2002). https://doi.org/10.1103/PhysRevC.66.054905

    Article  ADS  Google Scholar 

  54. Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, Nature 443, 675 (2006). https://doi.org/10.1038/nature05120

    Article  ADS  Google Scholar 

  55. L.-K. Yang, X. Luo, H.-S. Zong, Phys. Rev. D 100, 094012 (2019). https://doi.org/10.1103/PhysRevD.100.094012

    Article  ADS  Google Scholar 

  56. H. Song, U.W. Heinz, Phys. Lett. B 658, 279 (2008). https://doi.org/10.1016/j.physletb.2007.11.019

    Article  ADS  Google Scholar 

  57. Z. Qiu, U. Heinz, Phys. Lett. B 717, 261 (2012). https://doi.org/10.1016/j.physletb.2012.09.030

    Article  ADS  Google Scholar 

  58. C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass, U. Heinz, Comput. Phys. Commun. 199, 61 (2016). https://doi.org/10.1016/j.cpc.2015.08.039

    Article  ADS  MathSciNet  Google Scholar 

  59. L. Pang, Q. Wang, X.-N. Wang, Phys. Rev. C 86, 024911 (2012). https://doi.org/10.1103/PhysRevC.86.024911

    Article  ADS  Google Scholar 

  60. L.-G. Pang, H. Petersen, X.-N. Wang, Phys. Rev. C 97, 064918 (2018). https://doi.org/10.1103/PhysRevC.97.064918

    Article  ADS  Google Scholar 

  61. B. Schenke, S. Jeon, C. Gale, Phys. Rev. C 82, 014903 (2010). https://doi.org/10.1103/PhysRevC.82.014903

    Article  ADS  Google Scholar 

  62. B. Schenke, C. Shen, P. Tribedy, Phys. Rev. C 102, 044905 (2020). https://doi.org/10.1103/PhysRevC.102.044905

    Article  ADS  Google Scholar 

  63. C. Andrés, N. Armesto, M. Luzum, C.A. Salgado, P. Zurita, Eur. Phys. J. C 76, 475 (2016). https://doi.org/10.1140/epjc/s10052-016-4320-5

    Article  ADS  Google Scholar 

  64. X.-N. Wang, Phys. Lett. B 579, 299 (2004). https://doi.org/10.1016/j.physletb.2003.11.011

    Article  ADS  Google Scholar 

  65. S. Shi, J. Liao, M. Gyulassy, Chin. Phys. C 43, 044101 (2019). https://doi.org/10.1088/1674-1137/43/4/044101

    Article  ADS  Google Scholar 

  66. D. de Florian, R. Sassot, M. Epele, R.J. Hernández-Pinto, M. Stratmann, Phys. Rev. D 91, 014035 (2015). https://doi.org/10.1103/PhysRevD.91.014035

    Article  ADS  Google Scholar 

  67. V. Bertone, N.P. Hartland, E.R. Nocera, J. Rojo, L. Rottoli, NNPDF. Eur. Phys. J. C 78, 651 (2018). https://doi.org/10.1140/epjc/s10052-018-6130-4

    Article  ADS  Google Scholar 

  68. I. Borsa, D. de Florian, R. Sassot, M. Stratmann, Phys. Rev. D 105, L031502 (2022). https://doi.org/10.1103/PhysRevD.105.L031502

    Article  ADS  Google Scholar 

  69. I. Borsa, D. de Florian, R. Sassot, M. Stratmann, W. Vogelsang, Phys. Rev. Lett. 129, 012002 (2022). https://doi.org/10.1103/PhysRevLett.129.012002

    Article  ADS  Google Scholar 

  70. R.A. Khalek, V. Bertone, A. Khoudli, E.R. Nocera, Pion and kaon fragmentation functions at next-to-next-to-leading order. (2022), arXiv:2204.10331 [hep-ph]

  71. M. Soleymaninia, H. Hashamipour, H. Khanpour, H. Spiesberger, Fragmentation Functions for \(\Xi ^-/\bar{\Xi }^+\) Using Neural Networks (2022), arXiv:2202.05586 [hep-ph]

  72. R.A. Khalek, V. Bertone, E.R. Nocera, Phys. Rev. D 104, 034007 (2021). https://doi.org/10.1103/PhysRevD.104.034007

    Article  ADS  Google Scholar 

  73. M. Soleymaninia, H. Hashamipour, H. Khanpour, Phys. Rev. D 105, 114018 (2022). https://doi.org/10.1103/PhysRevD.105.114018

    Article  ADS  Google Scholar 

  74. L. Adamczyk et al., STAR. Phys. Lett. B 760, 689 (2016). https://doi.org/10.1016/j.physletb.2016.07.046

    Article  ADS  Google Scholar 

  75. K. Aamodt et al., ALICE. Phys. Rev. Lett. 108, 092301 (2012). https://doi.org/10.1103/PhysRevLett.108.092301

    Article  ADS  Google Scholar 

  76. R. Conway, CMS. Nucl. Phys. A 904–905, 451 (2013). https://doi.org/10.1016/j.nuclphysa.2013.02.046

    Article  ADS  Google Scholar 

  77. H.-Z. Zhang, J.F. Owens, E. Wang, X.N. Wang, J. Phys. G 35, 104067 (2008). https://doi.org/10.1088/0954-3899/35/10/104067

    Article  ADS  Google Scholar 

  78. J.G. Milhano, K.C. Zapp, Eur. Phys. J. C 76, 288 (2016). https://doi.org/10.1140/epjc/s10052-016-4130-9

    Article  ADS  Google Scholar 

  79. Y.-L. Du, D. Pablos, K. Tywoniuk, Phys. Rev. Lett. 128, 012301 (2022). https://doi.org/10.1103/PhysRevLett.128.012301

    Article  ADS  Google Scholar 

  80. H. Song, U.W. Heinz, Phys. Rev. C 77, 064901 (2008). https://doi.org/10.1103/PhysRevC.77.064901

    Article  ADS  Google Scholar 

  81. Z. Qiu, C. Shen, U. Heinz, Phys. Lett. B 707, 151 (2012). https://doi.org/10.1016/j.physletb.2011.12.041

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grants No. 11935007, Guangdong Major Project of Basic and Applied Basic Research No. 2020B0301030008, and Science and Technology Program of Guangzhou No. 2019050001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Zhong Zhang.

Appendix

Appendix

1.1 A: The \(\hat{q}_0\) extractions with different scales for different sets of FFs

To check the nuclear or medium effects in \(A+A\) collisions, phenomenologically, one need a suitable baseline of \(p+p\) collisions by adjusting the scale \(\mu\) to fit data well in \(p+p\) collisions. Shown in the upper panel of Fig. 14 are the numerical results for \(\pi ^0\) hadron spectra at large transverse momentum \(p_{\mathrm{T}}\) with the five sets of FFs in \(p+p\) collisions at \(\sqrt{s_{\mathrm{NN}}}=200\) GeV. Here, the suitable scale \(\mu\) is chosen in the theoretical model with each set of FFs for fitting to the experimental data [1], respectively. The lower panel of Fig. 14 is for the ratios of the experimental data over theoretical calculations. One can see that with the appropriate scales \(\mu\) in the model with different sets of FFs, the numerical results fit the data better relative to those in Fig. 1.

Fig. 14
figure 14

\(\pi ^0\) spectra given by the NLO pQCD parton model with the befitted scale \(\mu\) for each set of FFs in \(p+p\) collisions at \(\sqrt{s_{\mathrm{NN}}}=200\) GeV (upper panel), and spectrum ratios of data over the theoretical results (lower panel). The data are from Ref. [1]

Similarly, in \(p+p\) collisions at \(\sqrt{s_{\mathrm{NN}}}=2.76\) TeV the charged hadron spectra are also calculated with different scales in the NLO pQCD parton model for the six sets of FFs, as shown in the upper panel of Fig. 15. The ratios of the experimental data over theoretical calculations are shown in the lower panel. With the appropriate scales, the theoretical results fit data very well.

Using the above hadron spectra in \(p+p\) collisions as baselines, we extract the jet quenching parameter from single hadron and dihadron suppressions with suitable scale in each set of FFs. Figure 16 shows the \(\chi ^2/d.o.f\) fits to nuclear modification factors in central \(Au+Au\) collisions at \(\sqrt{s_{\mathrm{NN}}}=200\) GeV: panel (a) the fits to only single hadron \(R_{AA}(p_{\mathrm{T}})\), panel (b) the fits to only dihadron \(I_{AA}(z_{\mathrm{T}})\), and panel (c) the global fits to \(R_{AA}(p_{\mathrm{T}})\) + \(I_{AA}(z_{\mathrm{T}})\). From the panel (c), we can read the best-fitting values of jet transport coefficient: \(\hat{q}_0=1.4\) GeV\(^2\)/fm with KRE FFs at \(\mu =0.6p_{\mathrm{T}}\), \(\hat{q}_0=1.4\) GeV\(^2\)/fm with KKP FFs at \(\mu =1.2p_{\mathrm{T}}\), \(\hat{q}_0=1.4\) GeV\(^2\)/fm with HKNS FFs at \(\mu =0.6p_{\mathrm{T}}\), \(\hat{q}_0=1.2\) GeV\(^2\)/fm with AKK08 FFs at \(\mu =1.0p_{\mathrm{T}}\), and \(\hat{q}_0=1.2\) GeV\(^2\)/fm with DSS FFs at \(\mu =1.2p_{\mathrm{T}}\). The difference between \(\hat{q}_0=1.2 \sim 1.4\) GeV\(^2/\)fm is narrow relative to the same scale case.

Fig. 15
figure 15

Charged hadron spectra given by the NLO pQCD parton model with the befitted scale \(\mu\) in \(p+p\) collisions at \(\sqrt{s_{\mathrm{NN}}}=2.76\) TeV (upper panel), and spectrum ratios of data over the theoretical results (lower panel). The data are from Refs. [4, 5]

Figure 17 shows the \(\chi ^2/d.o.f\) fits to nuclear modification factors in central \(Pb+Pb\) collisions at \(\sqrt{s_{\mathrm{NN}}}=2.76\) TeV: (a) the fits to only single hadron \(R_{AA}(p_{\mathrm{T}})\), (b) the fits to only dihadron \(I_{AA}(p_{\mathrm{T}}^{\mathrm{assoc}})\), and (c) the global fits to \(R_{AA}(p_{\mathrm{T}})\) + \(I_{AA}(p_{\mathrm{T}}^{\mathrm{assoc}})\). We use six sets of fragmentation function parameterizations with different scales in our calculations, respectively. We get the best fitting values of the jet transport parameter as: \(\hat{q}_0=2.2\) GeV\(^2/\)fm with KRE FFs at \(\mu =1.5p_{\mathrm{T}}\), \(\hat{q}_0=2.4\) GeV\(^2/\)fm with KKP FFs at \(\mu =3.5p_{\mathrm{T}}\), \(\hat{q}_0=2.3\) GeV\(^2/\)fm with BFGW FFs at \(\mu =5.0p_{\mathrm{T}}\), \(\hat{q}_0=2.4\) GeV\(^2/\)fm with HKNS FFs at \(\mu =6.5p_{\mathrm{T}}\), \(\hat{q}_0=2.5\) GeV\(^2/\)fm with AKK08 FFs at \(\mu =7.5p_{\mathrm{T}}\), \(\hat{q}_0=2.4\) GeV\(^2/\)fm with DSS FFs at \(\mu =5.5p_{\mathrm{T}}\). The difference between \(\hat{q}_0\) drops to \(2.2\sim 2.5\) GeV\(^2/\)fm.

The above transport coefficients \(\hat{q}/T^3\) extracted in the model with different scales in different sets of FFs from hadron suppressions at RHIC and the LHC are summarized in the right panel of Fig. 13.

Fig. 16
figure 16

The \(\chi ^2/d.o.f\) results from fitting to nuclear modification factors in central \(Au+Au\) collisions at \(\sqrt{s_{\mathrm{NN}}}=200\) GeV, a the fits to only single hadron \(R_{AA}(p_{\mathrm{T}})\), b the fits to only dihadron \(I_{AA}(z_{\mathrm{T}})\), and c the global fits to \(R_{AA}(p_{\mathrm{T}})+I_{AA}(z_{\mathrm{T}})\). Five sets of fragmentation function parameterizations are used in the model with different scales, respectively

Fig. 17
figure 17

The \(\chi ^2/d.o.f\) results from fitting to nuclear modification factors in central \(Pb+Pb\) collisions at \(\sqrt{s_{\mathrm{NN}}}=2.76\) TeV, a the fits to only single hadron \(R_{AA}(p_{\mathrm{T}})\) [4, 5], b the fits to only dihadron \(I_{AA}(p_{\mathrm{T}}^{\mathrm{assoc}})\) [75, 76], and c the global fits to \(R_{AA}(p_{\mathrm{T}})+I_{AA}(p_{\mathrm{T}}^{\mathrm{assoc}})\). Six sets of fragmentation function parameterizations are used in the model with different scales, respectively

1.2 B: Characteristics of fragmentation function contributions for parton to hadron with different scales for different sets of FFs

Figure 18 shows the quark and gluon FFs of \(\pi ^0\) hadrons at \(p_{\mathrm{T}}=10\) GeV and 50 GeV for all the available FFs with different scales, respectively. Figure 19 shows the similar plot for charged-hadron FFs of quark and gluon with different scales in each FF. The difference between gluon FFs is a bit reduced with befitted scales compared with the same scale case.

Fig. 18
figure 18

Comparisons of parton-to-\(\pi ^0\) fragmentation functions between five sets of FFs: left panels are for quark FFs and right panels for gluon FFs. Upper panels are for the hadrons with \(p_{\mathrm{T}}=10\) GeV, and lower panels with \(p_{\mathrm{T}}=50\) GeV. The scale \(\mu\) is different for each FF

Fig. 19
figure 19

Comparisons of parton-to-\(h^{\pm }\) FFs between six sets of FFs: left panels are for quark FFs and right panels for gluon FFs. Upper panels are for the hadrons with \(p_{\mathrm{T}}=10\) GeV, and lower panels with \(p_{\mathrm{T}}=50\) GeV. The scale \(\mu\) is different for each FF

Fig. 20
figure 20

The contribution fractions of quark (solid lines) and gluon (dashed lines) fragmentations to the inclusive \(\pi ^0\) cross sections given by the model with only AKK08 FFs with \(\mu =1.0p_{\mathrm{T}}\) and \(\mu =1.2p_{\mathrm{T}}\) at \(\sqrt{s_{\mathrm{NN}}}=200\) GeV, respectively

Fig. 21
figure 21

The contribution fractions of quark (solid lines) and gluon (dashed lines) fragmentations to the inclusive charged-hadron cross sections given by the model with only AKK08 FFs with \(\mu =1.5p_{\mathrm{T}}\) and \(\mu =7.5p_{\mathrm{T}}\) at \(\sqrt{s_{\mathrm{NN}}}=2.76\) TeV, respectively

Taking the AKK08 FFs as examples, we show the relative contributions of quark and gluon to hadrons with the changed scales in \(p+p\) collisions at RHIC and the LHC energies, as shown in Figs. 20 and 21. One can see that both at RHIC and the LHC, with \(\mu\) increasing, the gluon contribution to final state hadrons will decrease; thus, we need a larger jet quenching parameter to compensate for the total jet energy loss.

For a given set of FFs in a NLO pQCD parton model, the different scales lead to the different fractions of gluon (quark) contributions to hadrons in \(p+p\) collisions. Although the scale change can also affect the parton distribution functions and the hard cross sections, the fraction change is mainly contributed by parton fragmentation functions, as shown in Figs. 20 and 21. In detail, when the scale \(\mu\) decreases from 1.2\(p_{\mathrm{T}}\) to 1.0\(p_{\mathrm{T}}\) at \(\sqrt{s_{\mathrm{NN}}}=200\) GeV, the contribution of gluon-to-hadron becomes larger, as illustrated in Fig. 20, so a relatively smaller \(\hat{q}_0\) is needed for the case of \(\mu = 1.0p_{\mathrm{T}}\) shown in Fig. 13. Meanwhile, with the \(\mu\) increasing from 1.5\(p_{\mathrm{T}}\) to 7.5\(p_{\mathrm{T}}\) at \(\sqrt{s_{\mathrm{NN}}}=2.76\) TeV, the contribution of gluon-to-hadron reduces, as presented in Fig. 21; thus, a relatively larger \(\hat{q}_0\) is needed for the case of \(\mu = 7.5p_{\mathrm{T}}\) shown in Fig. 13. In a word, the different fraction of gluon (quark) contribution to hadrons will give different energy loss parameters due to gluon energy loss being 9/4 times of quark energy loss.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, QF., Xie, M. & Zhang, HZ. Extracting the jet transport coefficient from hadron suppressions by confronting current NLO parton fragmentation functions. Eur. Phys. J. Plus 137, 1056 (2022). https://doi.org/10.1140/epjp/s13360-022-03247-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03247-9

Navigation