Skip to main content
Log in

Entropic cosmology for Rényi entropy

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In entropic cosmology, one can consider several forms of entropy on the horizon of the universe by using an entropic force scenario. In this framework, the horizon of the universe has entropy and temperature. In this study, we derive the entropic force term from the Bekenstein entropy and from the modified Rényi entropy to investigate the entropic cosmology. This will be done by applying the original logarithmic Rényi entropy formula and then using the Bekenstein entropy as a non-extensive Tsallis entropy. Entropic cosmology is obtained by deriving the modified Friedmann, acceleration, and continuity equations from these entropies. We suppose a homogeneous, isotropic, and spatially flat universe, focusing on a single fluid-dominated universe. Surprisingly, both the Rényi entropy, derived from the entropic force model and the standard \(\Lambda\)CDM (Lambda Cold Dark Matter) model predict the same accelerated expansion of the universe. Further, we have combined both of these models, i.e., Rényi and Bekenstein models and our findings show uniform acceleration of the universe as it is the case for the dark energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. S. Perlmutter et al., Nature (London) 391, 51 (1998)

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  4. A.G. Riess et al., Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  5. A.G. Riess et al., Astrophys. J. 659, 98 (2007)

    Article  ADS  Google Scholar 

  6. E. Komatsu et al., Astrophys. J. Suppl. Ser. 180, 330 (2009)

    Article  ADS  Google Scholar 

  7. E. Komatsu et al., Astrophys. J. Suppl. Ser. 192, 18 (2011)

    Article  ADS  Google Scholar 

  8. P.A. Ade et al., Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571 (2014)

  9. B. Ryden, Introduction to Cosmology (Addison-Wesley, Reading, MA, 2002)

    Google Scholar 

  10. S. Weinberg, Cosmology (Oxford University Press, New York, 2008)

    MATH  Google Scholar 

  11. G.F.R. Ellis, R. Maartens, M.A.H. MacCallum, Relativistic Cosmology (Cambridge University Press, Cambridge, England, 2012)

    Book  MATH  Google Scholar 

  12. L. Miao, L. Xiao-Dong, W. Shuang, W. Yi, Commun. Theor. Phys. 56, 525 (2011)

    Article  ADS  Google Scholar 

  13. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys. Space Sci. 342, 155 (2012)

    Article  ADS  Google Scholar 

  14. D.A. Easson, P.H. Frampton, G.F. Smoot, Phys. Lett. B 696, 273 (2011)

    Article  ADS  Google Scholar 

  15. D.A. Easson, P.H. Frampton, G.F. Smoot, Int. J. Mod. Phys. A 27, 1250066 (2012)

    Article  ADS  Google Scholar 

  16. T.S. Koivisto, D.F. Mota, M. Zumalaćarregui, J. Cosmol. Astropart. Phys. 02, 027 (2011)

    Article  ADS  Google Scholar 

  17. N. Komatsu, S. Kimura, Phys. Rev. D 87, 043531 (2013)

    Article  ADS  Google Scholar 

  18. N. Komatsu, In: Proceedings of the 12th Asia Pacific Physics Conference, APPC12, Chiba, Japan, (2013) (to be published)

  19. Y.F. Cai, J. Liu, H. Li, Phys. Lett. B 690, 213 (2010)

    Article  ADS  Google Scholar 

  20. Y.F. Cai, E.N. Saridakis, Phys. Lett. B 697, 280 (2011)

    Article  ADS  Google Scholar 

  21. T. Qiu, E.N. Saridakis, Phys. Rev. D 85, 043504 (2012)

    Article  ADS  Google Scholar 

  22. R. Casadio, A. Gruppuso, Phys. Rev. D 84, 023503 (2011)

    Article  ADS  Google Scholar 

  23. S. Basilakos, D. Polarski, J. Sola, Phys. Rev. D 86, 043010 (2012)

    Article  ADS  Google Scholar 

  24. J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  25. J. Binney, S. Tremaine, Galactic Dynamics (Princeton University Press, Princeton, NJ, 1987)

    MATH  Google Scholar 

  26. C. Tsallis, Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World (Springer, New York, 2009)

    MATH  Google Scholar 

  27. H.A. Posch, W. Thirring, Phys. Rev. Lett. 95, 251101 (2005)

    Article  ADS  Google Scholar 

  28. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  29. A. Renyi, Probability Theory (North-Holland, Amsterdam, 1970)

    MATH  Google Scholar 

  30. A. Plastino, A.R. Plastino, Phys. Lett. A 174, 384 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  31. N. Komatsu, Eur. Phys. J. C 77, 4 (2017)

    Article  Google Scholar 

  32. D.F. Torres, H. Vucetich, A. Plastino, Phys. Rev. Lett. 79, 1588 (1997)

    Article  ADS  Google Scholar 

  33. R.S. Mendes, C. Tsallis, Phys. Lett. A 285, 273 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  34. V. Latora, A. Rapisarda, C. Tsallis, Phys. Rev. E 64, 056134 (2001)

    Article  ADS  Google Scholar 

  35. P.H. Chavanis, Astron. Astrophys. 386, 732 (2002)

    Article  ADS  Google Scholar 

  36. A. Taruya, M. Sakagami, Phys. Rev. Lett. 90, 181101 (2003)

    Article  ADS  Google Scholar 

  37. A. Nakamichi, M. Morikawa, Phys. A 341, 215 (2004)

    Article  Google Scholar 

  38. A. Taruya, M. Sakagami, Mon. Not. R. Astron. Soc. 364, 990 (2005)

    Article  ADS  Google Scholar 

  39. B. Liu, J. Goree, Phys. Rev. Lett. 100, 055003 (2008)

    Article  ADS  Google Scholar 

  40. N. Komatsu, S. Kimura, T. Kiwata, Phys. Rev. E 80, 041107 (2009)

    Article  ADS  Google Scholar 

  41. N. Komatsu, T. Kiwata, S. Kimura, Phys. Rev. E 82, 021118 (2010)

    Article  ADS  Google Scholar 

  42. C. Tsallis, L.J.L. Cirto, Eur. Phys. J. C 73, 2487 (2013)

    Article  ADS  Google Scholar 

  43. J.A.S. Lima, R. Portugal, I. Waga, Phys. Rev. D 37, 2755 (1988)

    Article  ADS  Google Scholar 

  44. T. Padmanabhan, Mod. Phys. Lett. A 25, 1129 (2010)

    Article  ADS  Google Scholar 

  45. E. Verlinde, J. High Energy Phys. 04, 029 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  46. S.W. Hawking, G.T. Horowitz, Class. Quant. Grav. 13, 1487 (1996)

    Article  ADS  Google Scholar 

  47. A.G. Riess et al., Supernova search team collaboration. Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  48. S. Basilakos, D. Polarski, J. Sola, Phys. Rev. D 86, 043010 (2012)

    Article  ADS  Google Scholar 

  49. J. Sola, J. Phys. A 41, 164066 (2008)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for the valuable comments and suggestions to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamil Ahmed.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naeem, M., Ahmed, J. & Bibi, A. Entropic cosmology for Rényi entropy. Eur. Phys. J. Plus 137, 962 (2022). https://doi.org/10.1140/epjp/s13360-022-03169-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03169-6

Navigation