Skip to main content
Log in

Non-classical properties of a mechanical resonator coupled to a qubit

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We have studied the squeezing properties of a Nanomechanical resonator coupled to a qubit and driven by two resonant lasers of unequal intensities. The squeezing can be transferred from X quadrature to P quadrature by selecting the qubit states. Squeezing can be increased by increasing the parameter \(\eta =g/\omega _0\), where g is the resonator-qubit coupling strength and \(\omega _0\) is the resonator frequency. The strong laser does not play any role on squeezing. We have also shown the anti bunching effect of the phonon field by plotting the second order correlation function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availibility Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data includede in this manuscript are availaible upon request by contacting with the corresponding author.]

References

  1. V.V. Dodonov, Nonclassical’ states in quantum optics: asqueezed’ review of the first 75 years. J. Opt. B: Quantum Semiclass. Opt. 4(1), R1 (2002)

    Article  ADS  Google Scholar 

  2. P. Verlot, A. Tavernarakis, T. Briant, P.-F. Cohadon, A. Heidmann, Backaction amplification and quantum limits in optomechanical measurements. Phys. Rev. Lett. 104(13), 133602 (2010)

    Article  ADS  Google Scholar 

  3. V. Peano, H.G.L. Schwefel, Ch. Marquardt, F. Marquardt, Intracavity squeezing can enhance quantum-limited optomechanical position detection through deamplification. Phys. Rev. Lett. 115(24), 243603 (2015)

    Article  ADS  Google Scholar 

  4. J. Aasi, J. Abadie, B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, C. Adams, T. Adams, P. Addesso, R.X. Adhikari et al., Enhanced sensitivity of the ligo gravitational wave detector by using squeezed states of light. Nat. Photonics 7(8), 613–619 (2013)

    Article  ADS  Google Scholar 

  5. L. Diósi, Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40(3), 1165 (1989)

    Article  ADS  Google Scholar 

  6. D.F. Walls, Squeezed states of light. Nature 306(5939), 141–146 (1983)

    Article  ADS  Google Scholar 

  7. R. Slusher, L.W. Hollberg, B. Yurke, J.C. Mertz, J.F. Valley, Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett. 55(22), 2409 (1985)

    Article  ADS  Google Scholar 

  8. D.M. Meekhof, C. Monroe, B.E. King, W.M. Itano, D.J. Wineland, Generation of nonclassical motional states of a trapped atom. Phys. Rev. Lett. 76(11), 1796 (1996)

    Article  ADS  Google Scholar 

  9. D. Wigger, S. Lüker, V.M. Axt, D.E. Reiter, T. Kuhn. Squeezed phonon wave packet generation by optical manipulation of a quantum dot, in Photonics, vol. 2, Tansu, N. (ed.) (Multidisciplinary Digital Publishing Institute, 2015) pp. 214–227.

  10. E.E. Wollman, C.U. Lei, A.J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A.A. Clerk, K.C. Schwab, Quantum squeezing of motion in a mechanical resonator. Science 349(6251), 952–955 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Pontin, M. Bonaldi, A. Borrielli, F.S. Cataliotti, F. Marino, G.A. Prodi, E. Serra, Squeezing a thermal mechanical oscillator by stabilized parametric effect on the optical spring. Phys. Rev. Lett. 112(2), 023601 (2014)

    Article  ADS  Google Scholar 

  12. G.S. Agarwal, S. Huang, Strong mechanical squeezing and its detection. Phys. Rev. A 93(4), 043844 (2016)

    Article  ADS  Google Scholar 

  13. F. Lecocq, J.B. Clark, R.W. Simmonds, J. Aumentado, J.D. Teufel, Quantum nondemolition measurement of a nonclassical state of a massive object. Phys. Rev. X 5(4), 041037 (2015)

    Google Scholar 

  14. M. Das, J.K. Verma, P.K. Pathak, Generation of the superposition of mesoscopic states of a nanomechanical resonator by a single two-level system. Phys. Rev. A 96(3), 033837 (2017)

    Article  ADS  Google Scholar 

  15. S. Mandal, Squeezing, higher-order squeezing, photon-bunching and photon-antibunching in a quadratic hamiltonian. Mod. Phys. Lett. B 16(25), 963–973 (2002)

    Article  ADS  Google Scholar 

  16. S. Mandal, On the quantization problem of a driven harmonic oscillator with time dependent mass and frequency. Mod. Phys. Lett. B 17(18), 983–990 (2003)

    Article  ADS  Google Scholar 

  17. R.J. Glauber, The quantum theory of optical coherence. Phys. Rev. 130(6), 2529 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  18. C. Gerry, P. Knight, P.L. Knight, Introductory quantum optics (Cambridge University Press, 2005)

    Google Scholar 

  19. H.J. Carmichael, Photon antibunching and squeezing for a single atom in a resonant cavity. Phys. Rev. Lett. 55(25), 2790 (1985)

    Article  ADS  Google Scholar 

  20. X.T. Zou, L. Mandel, Photon-antibunching and sub-poissonian photon statistics. Phys. Rev. A 41(1), 475 (1990)

    Article  ADS  Google Scholar 

  21. W.A.T. Nogueira, S.P. Walborn, S. Pádua, C.H. Monken, Experimental observation of spatial antibunching of photons. Phys. Rev. Lett. 86(18), 4009 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research work was financially supported by DST, India (File No. DST/ICPS/QuST/Theme-1/2019/4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Das.

Appendix

Appendix

1.1 Appendix A

In general the squeezing operator is given by,

$$\begin{aligned} s(\xi )=e^{\frac{1}{2}(\xi ^* {\hat{a}}^2-\xi {{\hat{a}}^\dag 2})} , \end{aligned}$$
(11)

This is an unitary evolution operator with \(\xi =re^{i\theta }\), r is the squeezing parameter varies from \(-\infty \) to \(+\infty \) and \(\theta \) varies from 0 to \(2\pi \). We see that the squeezing operator corresponds to the Hamiltonian \(H \propto ({\hat{a}}^2+{{\hat{a}}^\dag 2}) \) which contains non linear terms in \(a,a^{\dag }\). This non-linearity will create some dynamical link between \({\hat{a}}\) and \( {\hat{a}}^\dag \) as shown in our paper [14] where we see that the time evolution of \({\hat{a}}(t)\) depends on \({\hat{a}}^\dag (t)\) and vice versa. This type of dynamics is necessary to create squeezed states.

1.2 Appendix B

The Hamiltonian of the system in rotating frame is given by,

$$ H = \hbar \omega a^{\dag } a + \hbar \Omega _{1} (\sigma _{ + } + \sigma _{ - } ) + i\hbar \Omega _{2} (\sigma _{ + } - \sigma _{ - } ) + \hbar g|e\rangle \langle e|(a + a^{\dag } ){\text{ }} $$
(B.1)

where \(\omega ,a,(a^\dag ),\Omega _1,(\Omega _2),g,\sigma _-(\sigma _+)\) are frequency of NMR mode, annihilation (creation) operator for phonon field, coupling constants for qubit with first (second) external field, coupling constant for qubit with NMR mode, lowering (raising) operator for qubit, respectively. In order to get a clear picture of the interaction of the Hamiltonian (1), we perform a time-independent unitary transformation. \( {\tilde{H}}= e^sHe^{-s}\), where \(s=\eta |e\rangle \langle e|(a^\dag -a)\) and \(\eta =g/\omega \). The term \(e^s=e^{\eta (a^\dag -a)|e\rangle \langle e|} \), is the rotation operator for the qubit whereas it will act as the displacement operator in phonon mode a.

$$\begin{aligned}&\sigma _+\rightarrow \sigma _+e^{\eta (a^\dag -a)} , \sigma _-\rightarrow \sigma _-e^{-\eta (a^\dag -a)} \, \hbox {and} \\&\quad a\rightarrow a+\eta |e\rangle \langle e|. \end{aligned}$$

The above Hamiltonian takes the form,

$$\begin{aligned} \begin{array}{c} {\tilde{H}}=\hbar \omega a^\dag a+\hbar \Omega _1 (\sigma _+e^{\eta (a^\dag -a)} +\sigma _-e^{-\eta (a^\dag -a)})\\ +i\hbar \Omega _2(\sigma _+e^{\eta (a^\dag -a)}-\sigma _-e^{-\eta (a^\dag -a)}) \end{array} \end{aligned}$$
(B.2)

For most practical cases \(\eta \sim 10^{-3} \), which is very small. That’s why we expand the above Hamiltonian up to 2nd order in \(\eta \) and then rearranging the terms,

$$ \begin{aligned} \tilde{H} & = \hbar \omega a^{\dag } a + \hbar \Omega _{1} (\sigma _{ + } + \sigma _{ - } ) + \hbar \Omega _{1} \eta (\sigma _{ + } - \sigma _{ - } )(a^{\dag } - a) \\ & \quad + \frac{{\hbar \Omega _{1} \eta ^{2} }}{2}(\sigma _{ + } + \sigma _{ - } )(a^{\dag } - a)^{2} \\ & \quad + i\hbar \Omega _{2} (\sigma _{ + } - \sigma _{ - } ) + i\hbar \Omega _{2} \eta (\sigma _{ + } + \sigma _{ - } )(a^{\dag } - a) \\ & \quad - \frac{{i\hbar \Omega _{2} \eta ^{2} }}{2}(\sigma _{ + } - \sigma _{ - } )(a^{\dag } - a)^{2} \\ \end{aligned} $$
(B.3)

We further rewrite the above Hamiltonian in the interaction picture in which the interaction with the stronger field has been diagonalized. In this picture, the state of the system \({\tilde{\psi }}\) and the Hamiltonian \({\tilde{H}}\) are transformed to,

$$\begin{aligned} \begin{array}{c} |{\bar{\psi }} \rangle =e^{iht} |{\tilde{\psi }} \rangle {\bar{H}}=e^{iht}{\tilde{H}} e^{-iht} \end{array} \end{aligned}$$
(B.4)

Where \(h=\Omega _1(\sigma _++\sigma _-)\). The qubit spin operators \(\sigma _\pm \) transform as,

$$\begin{aligned} \begin{array}{c} e^{iht}\sigma _\pm e^{-iht}=\sigma _\pm cos^2\Omega _1t+\sigma _\mp sin^2\Omega _1t \\ \mp i\sigma _z sin(2\Omega _1t) \end{array} \end{aligned}$$
(B.5)

As we consider that the qubit is driven strongly such that \(\Omega _1\) is very large(\(\Omega _1\gg g,\Omega _2 ,\omega ,\Gamma \)), and therefore we can neglect the highly oscillating terms i.e. \(sin(2\Omega _1t)\approx 0\)

$$ \begin{aligned} & \sigma _{ + } \to \sigma _{ + } cos^{2} \Omega _{1} t + \sigma _{ - } sin^{2} \Omega _{1} t \\ & \quad = \sigma _{ + } (\frac{{1 + cos2\Omega _{1} t}}{2}) + \sigma _{ - } (\frac{{1 - cos2\Omega _{1} t}}{2}) \approx \frac{{\sigma _{ + } + \sigma _{ - } }}{2} \\ \end{aligned} $$

as \(cos(\Omega _1 t)\approx 0\). Similarly, \(\sigma _-\rightarrow \sigma _-cos^2\Omega _1t+\sigma _+sin^2\Omega _1t\approx \frac{\sigma _++\sigma _-}{2}\). Thus \(\sigma _++\sigma _- \rightarrow \sigma _++\sigma _-\) and \(\sigma _+-\sigma _- \rightarrow 0\). Under this approximation, the effective Hamiltonian becomes,

$$\begin{aligned} \begin{array}{c} H_{eff}=\hbar \omega a^\dag a +i\hbar \Omega _2 \eta \sigma _x(a^\dag - a)\\ +\frac{\hbar \Omega _1 \eta ^2}{2}\sigma _x(a^\dag -a)^2 \end{array} \end{aligned}$$
(B.6)

After simplification the above Hamiltonian becomes,

$$ \begin{aligned} \overline{{\hat{H}}} _{{eff}} & = \hbar \Omega _{{1^{\prime}}} \sigma _{x} + \hbar \omega _{0} \hat{a}^{\dag } \hat{a} + i\hbar \Omega _{2} \eta \hat{\sigma }_{x} \left( {\hat{a}^{\dag } - \hat{a}} \right) \\ & \quad + \frac{{\hbar \Omega _{1} \eta ^{2} }}{2}\hat{\sigma }_{x} \left( {\hat{a}^{2} + \hat{a}^{{\dag 2}} } \right) - \hbar \Omega _{1} \eta ^{2} \sigma _{x} \widehat{{a^{\dag } }}\hat{a} \\ \end{aligned} $$
(B.7)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayen, D.K., Das, M. Non-classical properties of a mechanical resonator coupled to a qubit. Eur. Phys. J. Plus 137, 984 (2022). https://doi.org/10.1140/epjp/s13360-022-03162-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03162-z

Navigation