Skip to main content
Log in

3D Jackiw–Pi model: (anti-)chiral superfield approach to BRST formalism

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We discuss and derive the continuous Becchi–Rouet–Stora–Tyutin (BRST) and anti-BRST symmetry transformations for the Jackiw–Pi (JP) model of three (2 + 1)-dimensional (3D) massive non-Abelian 1-form gauge theory by exploiting the standard technique of (anti-)chiral superfield approach (ACSA) to BRST formalism where a few appropriate and specific sets of (anti-)BRST invariant quantities (i.e., physical quantities at quantum level) play a very important role. We provide the explicit derivation of the nilpotency and absolute anticommutativity properties of (anti-)BRST conserved charges and existence of Curci–Ferrari (CF)-condition within the realm of ACSA to BRST formalism where we take only a single Grassmannian variable into account. We also provide the clear proof of (anti-)BRST invariances of the coupled (but equivalent) Lagrangian densities within the framework of ACSA to BRST approach where the emergence of the CF-condition is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No data were used to support this study.

Notes

  1. According to the Noether theorem whenever any Lagrangian density or its corresponding action remains invariant under any continuous symmetry transformations, there exits conserved currents and charges corresponding to that given continuous symmetries.

  2. We obtain the following expressions after the application of \(s_b\) on \({\mathcal {Q}}_{ab}\) and \(s_{ab}\) on \({\mathcal {Q}}_{b}\) for the proof of absolute anticommutativity as: \(s_b {\mathcal {Q}}_{ab} = -\, i\int d^2x \Big [\bar{{\mathcal {B}}} \cdot \partial ^0 \Big ({\mathcal {B}} + \bar{{\mathcal {B}}} \,+ \,i \, g\, (\bar{C}\times C)\Big )\Big ] = -\,i\,\{{\mathcal {Q}}_b, {\mathcal {Q}}_{ab}\} = 0\) and \(s_{ab} {\mathcal {Q}}_b = i \int d^2x \Big [{\mathcal {B}} \cdot \partial ^0 \Big ({\mathcal {B}} + \bar{{\mathcal {B}}} \,+ \,i \, g\, (\bar{C}\times C)\Big )\Big ] = -\,i\,\{{\mathcal {Q}}_{ab}, {\mathcal {Q}}_{b}\} = 0\).

  3. The (anti-)BRST invariant quantities are obtained using nilpotency property of (anti-)BRST symmetry transformations Eqs. (7) and (8) and some of them are determined by the hit and trial method.

References

  1. P.A.M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science (Yeshiva University Press, New York, 1964)

  2. K. Sundermeyer, Constrained Dynamics: Lecture Notes in Physics, vol. 169 (Springer-Verlag, Berlin, 1982)

    MATH  Google Scholar 

  3. R.P. Feynman, Acta Phys. Polon. 24, 697 (1963)

    MathSciNet  Google Scholar 

  4. L.D. Faddeev, V.N. Popov, Phys. Lett. B 25, 29 (1967)

    Article  ADS  Google Scholar 

  5. B.S. DeWitt, Phys. Rev. 160, 113 (1967)

    Article  ADS  Google Scholar 

  6. B.S. DeWitt, Phys. Rev. 162, 1195 (1967)

    Article  ADS  Google Scholar 

  7. C. Becchi, A. Rouet, R. Stora, Phys. Lett. B 52, 344 (1974)

    Article  ADS  Google Scholar 

  8. C. Becchi, A. Rouet, R. Stora, Comm. Math. Phys. 42, 127 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  9. C. Becchi, A. Rouet, R. Stora, Ann. Phys. (N. Y.) 98, 287 (1976)

    Article  ADS  Google Scholar 

  10. I.V. Tyutin, Lebedev Institute Preprint, Report Number: FIAN-39 (1975). (unpublished), arXiv:0812.0580 [hep-th]

  11. G. Curci, R. Ferrari, Phys. Lett. B 63, 91 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  12. I.A. Batalin, G.A. Vilkovisky, Phys. Lett. B 102, 27 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  13. I.A. Batalin, G.A. Vilkovisky, Phys. Rev. D 28, 2567 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  14. I.A. Batalin, G.A. Vilkovisky, Nucl. Phys. B 234, 106 (1984)

    Article  ADS  Google Scholar 

  15. I.A. Batalin, P.M. Lavrov, I.V. Tyutin, J. Math. Phys. 31, 1487 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  16. I.A. Batalin, P.M. Lavrov, I.V. Tyutin, J. Math. Phys. 32, 532 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  17. I.A. Batalin, P.M. Lavrov, I.V. Tyutin, J. Math. Phys. 32, 2513 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  18. S. Deser, R. Jackiw, S. Templeton, Ann. Phys. 140, 372 (1982)

    Article  ADS  Google Scholar 

  19. S. Deser, R. Jackiw, S. Templeton, Phys. Rev. Lett. 48, 975 (1982)

    Article  ADS  Google Scholar 

  20. D.Z. Freedman, P.K. Townsend, Nucl. Phys. B 177, 282 (1981)

    Article  ADS  Google Scholar 

  21. T.J. Allen, M.J. Bowick, A. Lahiri, Mod. Phys. Lett. A 6, 559 (1991)

    Article  ADS  Google Scholar 

  22. A. Lahiri, Phys. Rev. D 63, 105002 (2001)

    Article  ADS  Google Scholar 

  23. E. Harikumar, A. Lahiri, M. Sivakumar, Phys. Rev. D 63, 105020 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Gupta, R.P. Malik, Eur. Phys. J. C 58, 517 (2008)

    Article  ADS  Google Scholar 

  25. S. Gupta, R. Kumar, R.P. Malik, Eur. Phys. J. C 65, 311 (2010)

    Article  ADS  Google Scholar 

  26. S. Gupta, R. Kumar, R.P. Malik, Eur. Phys. J. C 70, 491 (2010)

    Article  ADS  Google Scholar 

  27. R. Kumar, R.P. Malik, Eur. Phys. Lett. 94, 11001 (2011)

    Article  ADS  Google Scholar 

  28. R. Kumar, R.P. Malik, Eur. Phys. J. C 71, 1710 (2011)

    Article  ADS  Google Scholar 

  29. S. Krishna, A. Shukla, R.P. Malik, Int. J. Mod. Phys. A 26, 4419 (2011)

    Article  ADS  Google Scholar 

  30. R. Jackiw, S.-Y. Pi, Phys. Lett. B 403, 297 (1997)

    Article  ADS  Google Scholar 

  31. Ö.F. Dayi, Mod. Phys. Lett. A 13, 1969 (1998)

    Article  ADS  Google Scholar 

  32. O.M. Del Cima, J. Phys. A: Math. Theor. 44, 352001 (2011)

    Article  Google Scholar 

  33. S. Gupta, R. Kumar, R.P. Malik, Can. J. Phys. 92, 1033 (2014)

    Article  ADS  Google Scholar 

  34. S. Gupta, R. Kumar, Int. J. Theor. Phys. 55, 927 (2016)

    Article  Google Scholar 

  35. J. Thierry-Mieg, J. Math. Phys. 21, 2834 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  36. M. Quiros, F.J. De Urries, J. Hoyos, M.L. Mazon, E. Rodrigues, J. Math. Phys. 22, 1767 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  37. L. Bonora, M. Tonin, Phys. Lett. B 98, 48 (1981)

    Article  ADS  Google Scholar 

  38. L. Bonora, P. Pasti, M. Tonin, Nuovo Cimento A 64, 307 (1981)

    Article  ADS  Google Scholar 

  39. L. Bonora, P. Pasti, M. Tonin, Ann. Phys 144, 15 (1982)

    Article  ADS  Google Scholar 

  40. R.P. Malik, J. Phys. A: Math. Theor. 39, 10575 (2006)

    Article  ADS  Google Scholar 

  41. R.P. Malik, Eur. Phys. J. C 51, 169 (2007)

    Article  ADS  Google Scholar 

  42. R.P. Malik, Eur. Phy. J. C 60, 457 (2009)

    Article  ADS  Google Scholar 

  43. I.A. Batalin, K. Bering, P.H. Damgaard, Nucl. Phys. B 515, 455 (1998)

    Article  ADS  Google Scholar 

  44. I.A. Batalin, K. Bering, P.H. Damgaard, Phys. Lett. B 446, 175 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  45. P.M. Lavrov, PYu. Moshin, A.A. Reshetnyak, Mod. Phys. Lett. A 10, 2687 (1995)

    Article  ADS  Google Scholar 

  46. P.M. Lavrov, PYu. Moshin, A.A. Reshetnyak, JETP Lett. 62, 780 (1995)

    ADS  MathSciNet  Google Scholar 

  47. N. Srinivas, T. Bhanja, R.P. Malik, Adv. High Energy Phys. 2017, 6138263 (2017)

    Article  Google Scholar 

  48. B. Chauhan, S. Kumar, R.P. Malik, Int. J. Mod. Phys. A 33, 1850026 (2018)

    Article  ADS  Google Scholar 

  49. A. Shukla, N. Srinivas, R.P. Malik, Ann. Phys. 394, 98 (2018)

    Article  ADS  Google Scholar 

  50. B. Chauhan, S. Kumar, Adv. High Energy Phys. 2021, 5518304 (2021)

    Article  Google Scholar 

  51. B. Chauhan, S. Kumar, R.P. Malik, Int. J. Mod. Phys. A 37, 2250003 (2022)

    Article  Google Scholar 

  52. B. Chauhan, A. Tripathi, A.K. Rao, R.P. Malik, (2019). arXiv:1912.12909 [hep-th]

  53. A. Tripathi, B. Chauhan, A.K. Rao, R.P. Malik, Adv. High Energy Phys. 2021, 2056629 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The present investigation has been carried out under the DST-INSPIRE fellowship (Govt. of India) awarded to the author. The author of this paper expresses their gratefulness to the above national funding agency as well as A. K. Rao for a careful reading of the manuscript. Fruitful and enlightening comments by our esteemed Reviewer are thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Chauhan.

Ethics declarations

Conflicts of interest

The author declares that there are no conflicts of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, B. 3D Jackiw–Pi model: (anti-)chiral superfield approach to BRST formalism. Eur. Phys. J. Plus 137, 976 (2022). https://doi.org/10.1140/epjp/s13360-022-03161-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03161-0

Navigation