Skip to main content
Log in

Tidal disruption effects near black holes and Lambda-gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The tidal disruption of stars in the vicinity of massive black holes is discussed in the context of \(\varLambda \)-gravity. The latter provides an explanation to the Hubble tension as a possible consequence of two Hubble flows, the local and global ones. The bunch of notions that play role for the considered tidal effect are obtained, along with the rate of the disrupted stars. The role of pulsars is emphasized due to their ability to penetrate up to the horizon of the massive black hole as for them the tidal radius can reach the horizon. Tidal disruption mechanism also can lead to segregation of stars by their mean density versus the distance from the black hole, the denser stars surviving at shorter distances. The interplay of the central gravity field and the repulsive \(\varLambda \)-term increase with radius, and its certain observational consequences are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. J.G. Hills, Nature 254, 295 (1975)

    Article  ADS  Google Scholar 

  2. J. Frank, M.J. Rees, MNRAS 176, 633 (1976)

    Article  ADS  Google Scholar 

  3. V.G. Gurzadyan, L.M. Ozernoy, Nature 280, 214 (1979)

    Article  ADS  Google Scholar 

  4. V.G. Gurzadyan, L.M. Ozernoy, A &A 86, 315 (1980)

    ADS  Google Scholar 

  5. V.G. Gurzadyan, L.M. Ozernoy, A &A 95, 39 (1981)

    ADS  Google Scholar 

  6. M.J. Rees, Nature 333, 523 (1988)

    Article  ADS  Google Scholar 

  7. S. Komossa, J. High Energy Astrophys. 7, 148 (2015)

    Article  ADS  Google Scholar 

  8. S. Sazonov et al., MNRAS 508, 3820 (2021)

    Article  ADS  Google Scholar 

  9. C. Liu, et al., arXiv:2206.13494

  10. Y. Yao, et al., arXiv:2206.12713

  11. M. Eingorn, ApJ 825, 84 (2016)

    Article  ADS  Google Scholar 

  12. S. Capozziello et al., MNRAS 474, 2430 (2018)

    Article  ADS  Google Scholar 

  13. G. Chardin et al., A &A 652, A91 (2021)

    Google Scholar 

  14. M.G. Dainotti et al., ApJ 912, 150 (2021)

    Article  ADS  Google Scholar 

  15. V.G. Gurzadyan, Observatory 105, 42 (1985)

    ADS  Google Scholar 

  16. W.H. McCrea, E.A. Milne, Q. J. Math. 5, 73 (1934)

    Article  ADS  Google Scholar 

  17. E.A. Milne, Q. J. Math. 5, 64 (1934)

    Article  ADS  Google Scholar 

  18. V.G. Gurzadyan, Eur. Phys. J. Plus 134, 14 (2019)

    Article  Google Scholar 

  19. V.G. Gurzadyan, A. Stepanian, Eur. Phys. J. C 78, 632 (2018)

    Article  ADS  Google Scholar 

  20. V.G. Gurzadyan, A. Stepanian, Eur. Phys. J. C 79, 169 (2019)

    Article  ADS  Google Scholar 

  21. L. Verde, T. Treu, A.G. Riess, Nat. Astron. 3, 891 (2019)

    Article  ADS  Google Scholar 

  22. A.G. Riess, Nat. Rev. Phys. 2, 10 (2020)

    Article  Google Scholar 

  23. A.G. Riess, et al., arXiv:2112.04510 (2021)

  24. D. Brout, et al., arXiv:2202.04077 (2022)

  25. V.G. Gurzadyan, A. Stepanyan, Eur. Phys. J. Plus 136, 235 (2021)

    Article  Google Scholar 

  26. V.G. Gurzadyan, A. Stepanian, A &A 653, A145 (2021)

    Google Scholar 

  27. A. Stepanian, Sh. Khlghatyan, Eur. Phys. J. Plus 135, 712 (2020)

    Article  Google Scholar 

  28. A. Stepanian, Sh. Khlghatyan, V.G. Gurzadyan, Eur. Phys. J. C 80, 1011 (2020)

    Article  ADS  Google Scholar 

  29. A. Stepanian, Sh. Khlghatyan, V.G. Gurzadyan, Eur. Phys. J. Plus 136, 127 (2021)

    Article  Google Scholar 

  30. V.G. Gurzadyan, A.A. Kocharyan, A. Stepanian, Eur. Phys. J. C 80, 24 (2020)

    Article  ADS  Google Scholar 

  31. J. Magorrian, S. Tremaine, MNRAS 309(2), 447 (1999)

    Article  ADS  Google Scholar 

  32. D. Merritt, Class. Quant. Gravity 30, 244005 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  33. J. Antoniadis et al., Science 340, 448 (2013)

    Article  ADS  Google Scholar 

  34. R.J. Tayler, The Stars: Their Structure and Evolution (Cambridge University Press, 1994)

  35. W. Rindler, Relativity: Special, General and Cosmological (Oxford University Press, 2006)

  36. V.G. Gurzadyan et al., A &A 566, A135 (2014)

    Google Scholar 

  37. K. Liu, ApJ 747, L1 (2012)

    Article  ADS  Google Scholar 

  38. D. Psaltis, W. Norbert, M. Kramer, ApJ 818, 121 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Gurzadyan.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanian, A., Khlghatyan, S. & Gurzadyan, V.G. Tidal disruption effects near black holes and Lambda-gravity. Eur. Phys. J. Plus 137, 965 (2022). https://doi.org/10.1140/epjp/s13360-022-03143-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03143-2

Navigation