Skip to main content
Log in

Application of quantum supersymmetry to rovibrational states of diatomic molecules with an energy dependent Morse potential

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The energy-dependent Morse potential is used to study diatomic molecules. Their rovibrational energy eigenvalues are calculated by applying the quantum supersymmetry (SUSY-QM) formalism related to this kind of potentials associated to the Pekeris approximation of the centrifugal term. At first, a general case with this energy dependent potential is investigated in order to test the efficiency of the Pekeris approximation in function of the potential range parameter. A comparison between the obtained analytical results with the exact numerical solutions of the Schrödinger equation in the energy-dependent and the energy-independent cases shows that the numerical results agree well with the analytical expression. An other point is also verified, the curve shape of the potential behavior is studied and compared with the standard Morse potential form and the Rydberg Klein Rees (RKR) data in the case of the ground state of the two diatomic molecules: \(N_{2}\) and \(O_{2}\). The solubility of the general proposed model and the compatibility of the ground energy dependent potential with the RKR data curves represent the key elements that led us to make an extension of this study to realistic cases. Applications of SUSY-QM to some several diatomic molecules: \(N_{2}\), \(O_{2}\), \(Li_{2}\) and HF are shown the effect of this dependence on their rovibrational energy spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The experimental data were obtained from NIST and the underlying results are available as part of this article.

References

  1. D. Popov, Phys. Scr. 63(4), 257 (2001)

    Article  ADS  Google Scholar 

  2. S.H. Dong, R. Lemus, A. Frank, Int. J. Quantum Chem. 86(5), 433 (2002)

    Article  Google Scholar 

  3. P.M. Morse, Phys. Rev. 34(1), 57 (1929)

    Article  ADS  Google Scholar 

  4. A. Desai, N. Mesquita, V. Fernandes, Phys. Scr. 95(8), 085401 (2020)

    Article  ADS  Google Scholar 

  5. S.H. Dong, G.H. Sun, Phys. Lett. A 314(4), 261 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  6. O. Bayrak, I. Boztosun, J. Phys. A: Math. Gen. 39(22), 6955 (2006)

    Article  ADS  Google Scholar 

  7. J.P. Killingbeck, A. Grosjean, G. Jolicard, J. Chem. Phys. 116(1), 447 (2002)

    Article  ADS  Google Scholar 

  8. F. Benamira, L. Guechi, S. Mameri, M. Sadoun, J. Math. Phys. 48(3), 032102 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. C. Berkdemir, J. Han, Chem. Phys. Lett. 409(4–6), 203 (2005)

    Article  ADS  Google Scholar 

  10. C. Berkdemir, Nucl. Phys. A 770(1–2), 32 (2006)

    Article  ADS  Google Scholar 

  11. M. Bag, M. Panja, R. Dutt, Y. Varshni, Phys. Rev. A 46(9), 6059 (1992)

    Article  ADS  Google Scholar 

  12. E.D. Filho, R.M. Ricotta, Phys. Lett. A 269(5), 269 (2000). https://doi.org/10.1016/S0375-9601(00)00267-X

  13. D.A. Morales, Chem. Phys. Lett. 394(1–3), 68 (2004)

    Article  ADS  Google Scholar 

  14. R.L. Greene, C. Aldrich, Phys. Rev. A 14, 2363 (1976). https://doi.org/10.1103/PhysRevA.14.2363

    Article  ADS  Google Scholar 

  15. C. Pekeris, Phys. Rev. 45(2), 98 (1934)

    Article  ADS  Google Scholar 

  16. C. Townes, A. Schawlow, Proc. R. Ir. Acad. (Sect. A) 46, 9 (1975)

    Google Scholar 

  17. L. Pauling, E.B. Wilson, Introduction to Quantum Mechanics with Applications to Chemistry (Courier Corporation, 2012)

  18. O. Klein, Z. Phys. 37(12), 895 (1926)

    Article  ADS  Google Scholar 

  19. A. Benchikha, L. Chetouani, Cent. Eur. J. Phys. 12(6), 392 (2014). https://doi.org/10.2478/s11534-014-0457-8

    Article  Google Scholar 

  20. P.A.M. Dirac, The Principles of Quantum Mechanics, vol. 27 (Oxford university Press, 1981)

  21. H.W. Crater, P. Van Alstine, Phys. Rev. D 36(10), 3007 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  22. H. Hassanabadi, E. Maghsoodi, R. Oudi, S. Zarrinkamar, H. Rahimov, Eur. Phys. J. Plus 127(10), 1 (2012)

    Article  Google Scholar 

  23. W. Pauli, Zur Quantenmechanik des Magnetischen Elektrons (Vieweg+Teubner Verlag, Wiesbaden, 1988), pp. 282–305. https://doi.org/10.1007/978-3-322-90270-2_32

  24. H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms (Springer, 2012)

  25. J. Mourad, H. Sazdjian, J. Math. Phys. 35(12), 6379 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  26. R.J. Lombard, J. Mareš, C. Volpe, J. Phys. G: Nucl. Part. Phys. 34(9), 1879 (2007). https://doi.org/10.1088/0954-3899/34/9/002

    Article  ADS  Google Scholar 

  27. P. Gupta, I. Mehrotra, J. Mod. Phys. 3(10), 1530 (2012)

    Article  Google Scholar 

  28. A. Al-Jamel, Mod. Phys. Lett. A 33(32), 1850185 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. B.S. Pavlov, A. Strepetov, Teor. Mat. Fiz. 90(2), 226 (1992)

    Article  Google Scholar 

  30. V. Belyavskii, M. Gol’dfarb, Y.V. Kopaev, Semiconductors 31(9), 936 (1997)

    Article  ADS  Google Scholar 

  31. C. Jean, in Annales de l’IHP Physique théorique, vol. 38 (1983), pp. 15–35

  32. M. Jaulent, I. Miodek, Lett. Math. Phys. 1(3), 243 (1976)

    Article  ADS  Google Scholar 

  33. J. Formánek, R.J. Lombard, J. Mareš, Czech. J. Phys. 54(3), 289 (2004). https://doi.org/10.1023/B:CJOP.0000018127.95600.a3

    Article  ADS  Google Scholar 

  34. R.J. Lombard, J. Mareš, Phys. Lett. A 373(4), 426 (2009). www.sciencedirect.com/science/article/pii/S0375960108017209

  35. R. Yekken, Du spectre au potentiel étude du problème inverse dans le cas des états discrets avec extension aux potentiels dépendant de l’énergie. Ph.D. thesis, Université des sciences et de la technologie Houari Boumediene (2009)

  36. R. Yekken, R.J. Lombard, J. Phys. A: Math. Theor. 43(12), 125301 (2010). https://doi.org/10.1088/1751-8113/43/12/125301

    Article  ADS  Google Scholar 

  37. A. Schulze-Halberg, Cent. Eur. J. Phys. 9(1), 57 (2011)

    Google Scholar 

  38. H. Hassanabadi, S. Zarrinkamar, A. Rajabi, Commun. Theor. Phys. 55(4), 541 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  39. A. Benchikha, L. Chetouani, Mod. Phys. Lett. A 28(18), 1350079 (2013). https://doi.org/10.1142/S021773231350079X

    Article  ADS  Google Scholar 

  40. R. Yekken, M. Lassaut, R.J. Lombard, Ann. Phys. 338, 195 (2013). https://doi.org/10.1016/j.aop.2013.08.005

  41. R. Yekken, M. Lassaut, R.J. Lombard, Few-Body Syst. 54(11), 2113 (2013). https://doi.org/10.1007/s00601-013-0720-3

    Article  ADS  Google Scholar 

  42. A. Budaca, R. Budaca, Phys. Scr. 92(8), 084001 (2017)

    Article  ADS  Google Scholar 

  43. E. Hocine, R. Yekken, R.J. Lombard, Eur. Phys. J. Plus 134(11), 561 (2019). https://doi.org/10.1140/epjp/i2019-12921-6

    Article  Google Scholar 

  44. A. Budaca, R. Budaca, Eur. Phys. J. Plus 134(4), 145 (2019)

    Article  Google Scholar 

  45. U.S. Okorie, A.N. Ikot, P.O. Amadi, A.T. Ngiangia, E.E. Ibekwe, Eclét. Quím. 45(4), 40 (2020)

    Article  Google Scholar 

  46. P. Ushie, C. Ekpo, T. Magu, P. Okoi, Eur. J. Appl. Phys. 3(2), 34 (2021)

    Article  Google Scholar 

  47. F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251(5), 267 (1995). https://doi.org/10.1016/0370-1573(94)00080-M

  48. A. Gangopadhyaya, J.V. Mallowand, C. Rasinariu, Supersymmetric Quantum Mechanics: An Introduction (World Scientific Publishing Company, 2017)

  49. L.E. Gendenshtein, JETP Lett. 38, 356 (1983). [Pisma Zh. Eksp. Teor. Fiz. 38, 299 (1983)]

  50. W. Lucha, F.F. Schöberl, Int. J. Mod. Phys. C 10(04), 607 (1999). https://doi.org/10.1142/S0129183199000450

    Article  ADS  Google Scholar 

  51. E. Hairer, S.P. Norsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Volume 8 of Computational Mathematics (1993)

  52. J. Dunham, Phys. Rev. 41(6), 721 (1932)

    Article  ADS  Google Scholar 

  53. S. Flügge, P. Walger, A. Weiguny, J. Mol. Spectrosc. 23(3), 243 (1967)

    Article  ADS  Google Scholar 

  54. K.P. Huber (Springer, 2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samia Boufas.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boufas, S., Yekken, R., Hocine, E. et al. Application of quantum supersymmetry to rovibrational states of diatomic molecules with an energy dependent Morse potential. Eur. Phys. J. Plus 137, 951 (2022). https://doi.org/10.1140/epjp/s13360-022-03120-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03120-9

Navigation