Skip to main content
Log in

Detecting spin nonclassicality via average skew information

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Spin nonclassicality is the discrete analogue of the continuous variable optical nonclassicality, and may be regarded as a resource related to coherence or quantumness of states with respect to an overcomplete basis consisting of spin coherent states. It plays a significant role in some quantum information processing tasks such as quantum computation and quantum metrology. Detecting and quantifying spin nonclassicality, which are of both theoretical and experimental relevance, have attracted much attention in quantum information theory. In this work, by virtue of the Wigner–Yanase skew information and the resolution of identity induced by spin coherent states, we provide an information-theoretic approach to spin nonclassicality, elucidate its basic properties and illustrate it through some important and widely used spin states. In particular, we derive a convenient criterion for detecting spin nonclassicality and use it to certify spin nonclassicality for some prototypical states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data.

References

  1. R.J. Glauber, The quantum theory of optical coherence. Phys. Rev. 130, 2529 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  2. R.J. Glauber, Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. E.C.G. Sudarshan, Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. U.M. Titulaer, R.J. Glauber, Correlation functions for coherent fields. Phys. Rev. 140, B674 (1965)

    Article  MathSciNet  Google Scholar 

  5. D.F. Walls, G.J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994)

    Book  MATH  Google Scholar 

  6. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995)

    Book  Google Scholar 

  7. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge Univ. Press, Cambridge, 1997)

    Book  Google Scholar 

  8. V.V. Dodonov, V.I. Man’ko, Theory of Nonclassical States of Light (Taylor & Francis, London, 2003)

    Book  Google Scholar 

  9. W. Vogel, D.G. Welsch, Quantum Optics (Wiley-VCH, Weinheim, 2006)

    Book  MATH  Google Scholar 

  10. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambrige, 2000)

    MATH  Google Scholar 

  11. L. Mandel, Sub-Poissonian photon statistics in resonance flourescence. Opt. Lett. 4, 205 (1979)

    Article  ADS  Google Scholar 

  12. M. Hillery, Nonclasssical distance in quantum optics. Phys. Rev. A 35, 725 (1987)

    Article  ADS  Google Scholar 

  13. C.T. Lee, Measure of the nonclassicality of nonclassical states. Phys. Rev. A 44, R2775 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  14. N. Lütkenhaus, S.M. Barnett, Nonclassical effects in phase space. Phys. Rev. A 51, 3340 (1995)

    Article  ADS  Google Scholar 

  15. P. Marian, T.A. Marian, H. Scutaru, Quantifying nonclassicality of one-mode Gaussian states of the radiation field. Phys. Rev. Lett. 88, 153601 (2002)

    Article  ADS  Google Scholar 

  16. Th. Richter, W. Vogel, Nonclassicality of quantum states: a hierarchy of observable conditions. Phys. Rev. Lett. 89, 283601 (2002)

    Article  ADS  Google Scholar 

  17. V.V. Dodonov, Nonclassical states in quantum optics: a squeezed review of the first 75 years. J. Opt. B 4, R1 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Kenfack, K. Zyczkowski, Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B 6, 396 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  19. E. Shchukin, Th. Richter, W. Vogel, Nonclassicality criteria in terms of moments. Phys. Rev. A 71, 011802(R) (2005)

    Article  ADS  Google Scholar 

  20. C. Gehrke, J. Sperling, W. Vogel, Quantification of nonclassicality. Phys. Rev. A 86, 052118 (2012)

    Article  ADS  Google Scholar 

  21. B. Yadin, F.C. Binder, J. Thompson, V. Narasimhachar, M. Gu, M.S. Kim, Operational resource theory of continuous-variable nonclassicality. Phys. Rev. X 8, 041038 (2018)

    Google Scholar 

  22. H. Kwon, K.C. Tan, T. Volkoff, H. Jeong, Nonclassicality as a quantifiable resource for quantum metrology. Phys. Rev. Lett. 122, 040503 (2019)

    Article  ADS  Google Scholar 

  23. K.C. Tan, S. Choi, H. Jeong, Negativity of quasiprobability distributions as a measure of nonclassicality. Phys. Rev. Lett. 124, 110404 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Luo, Y. Zhang, Detecting nonclassicality of light via Lieb’s concavity. Phys. Lett. A 383, 125836 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Luo, Y. Zhang, Quantifying nonclassicality via Wigner-Yanase skew information. Phys. Rev. A 100, 032116 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Luo, Y. Zhang, Quantumness of bosonic field states. Int. J. Theor. Phys. 59, 206 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. D.J. Wineland, J.J. Bollinger, W.M. Itano, F.L. Moore, D.J. Heinzen, Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, 6797(R) (1992)

    Article  ADS  Google Scholar 

  28. M. Kitagawa, M. Ueda, Squeezed spin states. Phys. Rev. A 47, 5138 (1993)

    Article  ADS  Google Scholar 

  29. A. Sørensen, K. Mølmer, Spin-spin interaction and spin squeezing in an optical lattice. Phys. Rev. Lett. 83, 2274 (1999)

    Article  ADS  Google Scholar 

  30. V.V. Dodonov, M.B. Renó, Classicality and anticlassicality measures of pure and mixed quantum states. Phys. Lett. A 308, 249 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. O. Giraud, P. Braun, D. Braun, Classicality of spin states. Phys. Rev. A 78, 042112 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. G. Tóth, C. Knapp, O. Gühne, H.J. Briegel, Spin squeezing and entanglement. Phys. Rev. A 79, 042334 (2009)

    Article  ADS  MATH  Google Scholar 

  33. O. Giraud, P. Braun, D. Braun, Quantification of nonclassicality. New J. Phys. 12, 063005 (2010)

    Article  ADS  MATH  Google Scholar 

  34. J. Ma, X. Wang, C.P. Sun, F. Nori, Quantum spin squeezing. Phys. Rep. 509, 89 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  35. T. Kiesel, W. Vogel, S.L. Christensen, J.-B. Béguin, J. Appel, E.S. Polzik, Atomic nonclassical quasiprobabilities. Phys. Rev. A 86, 042108 (2012)

    Article  ADS  Google Scholar 

  36. M. Oszmaniec, Ku\(\acute{\rm s}\) M, On detection of quasiclassical states. J. Phys. A 45, 244034 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. F. Bohnet-Waldraff, D. Braun, O. Giraud, Quantumness of spin-1 states. Phys. Rev. A 93, 012104 (2016)

    Article  ADS  Google Scholar 

  38. L. Pezze, A. Smerzi, M.K. Oberthaler, R. Schmied, P. Treutlein, Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  39. H. Dai, S. Luo, Information-theoretic approach to atomic spin nonclassicality. Phys. Rev. A 100, 062114 (2019)

    Article  ADS  Google Scholar 

  40. H. Dai, S. Fu, S. Luo, Atomic nonclassicality in the Jaynes-Cummings model. Phys. Lett. A 384, 126371 (2020)

    Article  MathSciNet  Google Scholar 

  41. Y. Zhang, S. Luo, Spin nonclassicality via variance. Theor. Math. Phys. 208, 916 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  42. J.M. Radcliffe, Some properties of coherent spin states. J. Phys. A 4, 313 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  43. P.W. Atkins, J.C. Dobson, Angular momentum coherent states. Proc. Roy. Soc. Lond. A 321, 321 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  44. F.T. Arecchi, E. Courtens, R. Gilmore, H. Thomas, Atomic coherent states in quantum optics. Phys. Rev. A 6, 2211 (1972)

    Article  ADS  Google Scholar 

  45. A.M. Perelomov, Coherent states for arbitrary Lie group. Commun. Math. Phys. 26, 222 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. J.R. Klauder, B. Skagerstam, Coherent States (World Scientific, Singapore, 1985)

    Book  MATH  Google Scholar 

  47. A. Peremolov, Generalized Coherent States and Their Applications (Springer-Verlag, Berlin, 1986)

    Book  Google Scholar 

  48. W. Zhang, D. Feng, R. Gilmore, Coherent states: theory and some applications. Rev. Mod. Phys. 62, 867 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  49. J.-P. Gazeau, Coherent States in Quantum Physics (Wiley-VCH, Berlin, 2009)

    Book  Google Scholar 

  50. A. Sørensen, L.-M. Duan, J.I. Cirac, P. Zoller, Many-particle entanglement with Bose-Einstein condensates. Nature 409, 63 (2001)

    Article  ADS  Google Scholar 

  51. L. Pezzé, A. Smerzi, Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett. 102, 100401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  52. P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, L. Pezzé, A. Smerzi, Fisher information and multiparticle entanglement. Phys. Rev. A 85, 022321 (2012)

    Article  ADS  Google Scholar 

  53. G. Tóth, Multipartite entanglement and high-precision. Phys. Rev. A 85, 022322 (2012)

    Article  ADS  Google Scholar 

  54. S. Luo, Y. Sun, Coherence and complementarity in state-channel interaction. Phys. Rev. A 98, 012113 (2018)

    Article  ADS  Google Scholar 

  55. E.P. Wigner, M.M. Yanase, Information contents of distributions. Proc. Natl. Acad. Sci. USA 49, 910 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. E.H. Lieb, Convex trace functions and the Wigner-Yanase-Dyaon conjecture. Adv. Math. 11, 267 (1973)

    Article  MATH  Google Scholar 

  57. S. Luo, Wigner-Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003)

    Article  ADS  Google Scholar 

  58. S. Luo, Wigner-Yanase skew information vs quantum Fisher information. Proc. Am. Math. Soc. 132, 885 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  59. A. Connes, E. Størmer, Homogeneity of the state space of factors of type III\(_1\). J. Funct. Anal. 28, 187 (1978)

    Article  MATH  Google Scholar 

  60. S. Luo, Quantum versus classical uncertainty. Theor. Math. Phys. 143, 681 (2005)

    Article  MATH  Google Scholar 

  61. S. Luo, Heisenberg uncertainty relation for mixed states. Phys. Rev. A 72, 042110 (2005)

    Article  ADS  Google Scholar 

  62. D. Girolami, T. Tufarelli, G. Adesso, Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  63. I. Marvian, R.W. Spekkens, Extending Noether’s theorem by quantifying the asymmetry of quantum states. Nat. Commun. 5, 3821 (2014)

    Article  ADS  Google Scholar 

  64. I. Marvian, R.W. Spekkens, P. Zanardi, Quantum speed limits, coherence and asymmetry. Phys. Rev. A 93, 052331 (2016)

    Article  ADS  Google Scholar 

  65. S. Luo, Y. Sun, Quantum coherence versus quantum uncertainty. Phys. Rev. A 96, 022130 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  66. Y. Sun, Y. Mao, S. Luo, From quantum coherence to quantum correlations. Europhys. Lett. 118, 60007 (2017)

    Article  ADS  Google Scholar 

  67. E.H. Lieb, J.P. Solovej, Proof of an entropy conjecture for Bloch coherent spin states and its generalizations. Acta Math. 212, 379 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  68. D. Petz, Monotone metrics on matrix space. Linear Alg. Appl. 244, 81 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  69. Y. Zhang, S. Luo, Quantum states as observables: their variance and nonclassicality. Phys. Rev. A 102, 062211 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  70. W.K. Wootters, A Wigner-function formulation of finite-state quantum mechanics. Ann. Phys. 176, 1 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  71. K.S. Gibbons, M.J. Hoffman, W.K. Wootters, Discrete phase space based on finite fields. Phys. Rev. A 70, 062101 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. D. Gross, Hudson’s theorem for finite-dimensional quantum systems. J. Math. Phys. 47, 122107 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. C. Ferrie, J. Emerson, Framed Hilbet space: Hanging the quasi-probability pictures of quantum theory. New J. Phys. 11, 063040 (2009)

    Article  ADS  Google Scholar 

  74. G. Björk, A.B. Klimov, L. Sánchez-Soto, The discrete Wigner function. Prog. Opt. 51, 469 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R &D Program of China, Grant No. 2020YFA0712700, 2019QY0702 and 2017YFA0303903, and the National Natural Science Foundation of China, Grant Nos. 11875317 and 61833010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunlong Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, H., Luo, S. Detecting spin nonclassicality via average skew information. Eur. Phys. J. Plus 137, 636 (2022). https://doi.org/10.1140/epjp/s13360-022-02875-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02875-5

Navigation