Skip to main content
Log in

Spin squeezing in symmetric multiqubit states with two non-orthogonal Majorana spinors

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Enhanced precision measurements using entangled many particle states are crucial for their technological applications in quantum information science and metrology. Squeezed spin states are a class of permutation symmetric N particle entangled states, which exhibit reduced quantum fluctuation in their collective spin angular momentum in a certain direction, and they are useful for quantum enhanced metrology. Permutation symmetric states attract attention as they offer significant test grounds for the description of entanglement in multipartite quantum systems, which is crucial for processing complex quantum information tasks. Spin squeezing serves as an experimentally amenable collective criterion of entanglement in symmetric multiqubit systems. In this paper, we explore spin-squeezing behavior in different classes of N-qubit symmetric states consisting of all permutations of two distinct spinors. We employ Majorana geometric representation of multiqubit states obeying exchange symmetry for this purpose. We prove that N qubit symmetric states consisting of two distinct non-orthogonal spinors do exhibit spin squeezing, thus expanding the avenues of their applicability in quantum enhanced sensing tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. For states belonging to the class \(\{ \mathcal{D}_{N-k,k}\}\) with different values of \(k=2,3,\ldots \), we find that (i) the mean spin direction (denoted by the unit vector \(\hat{n}_0\)) lies in the XZ plane and (ii) the \(2\times 2\) block \(T_\bot \) of correlation matrix T, which is expressed in the basis \(({\hat{n}}_1, \hat{n}_2)\) orthogonal to the mean spin direction \(\hat{n}_0\), is diagonal, i.e., \({\widetilde{\hat{n}}_{1}}\, T \, {\hat{n}}_{2}=0\). It is seen that \({\mathrm{min}}\left( \widetilde{\hat{n}}_{1}\, T\, {\hat{n}}_{1},\, \widetilde{\hat{n}}_{2}\,T\,{\hat{n}}_{2}\right) =\widetilde{\hat{n}}_{2}\,T\,{\hat{n}}_{2}\). Thus, the spin-squeezing parameter [see Eqs. (6) and (11)] takes the form \(\xi =\sqrt{1+(N-1)\, (\widetilde{\hat{n}}_{2}\,T\,{\hat{n}}_{2})}\) for any k and N.

References

  1. Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)

    Article  ADS  Google Scholar 

  2. Mikami, H., Li, Y., Kobayashi, T.: Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion. Phys. Rev. A 70, 052308 (2004)

    Article  ADS  Google Scholar 

  3. Wieczorek, W., Krischek, R., Kiesel, N., Michelberger, P., Tóth, G., Weinfurter, H.: Experimental entanglement of a six-photon symmetric Dicke state. Phys. Rev. Lett. 103, 020504 (2009)

    Article  ADS  Google Scholar 

  4. Wieczorek, W., Kiesel, N., Schmid, C., Weinfurter, H.: Multiqubit entanglement engineering via projective measurements. Phys. Rev. A 79, 022311 (2009)

    Article  ADS  Google Scholar 

  5. Hume, D.B., Chou, C.W., Rosenband, T., Wineland, D.J.: Preparation of Dicke states in an ion chain. Phys. Rev. A 80, 052302 (2009)

    Article  ADS  Google Scholar 

  6. Zarkeshian, P., Deshmukh, C., Sinclair, N., Goyal, S.K., Aguilar, G.H., Lefebvre, P., Puigibert, M.G., Verma, V.B., Marsili, F., Shaw, M.D., Nam, S.W., Heshami, K., Oblak, D., Tittel, W., Simon, C.: Entanglement between more than two hundred macroscopic atomic ensembles in a solid. Nat. Commun. 8, 906 (2017)

    Article  ADS  Google Scholar 

  7. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  8. Ma, J., Wang, X., Sun, C.P., Nori, F.: Quantum spin squeezing. Phys. Rep. 509, 89 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  9. Wódkiewicz, K., Eberly, J.H.: Coherent states, squeezed fluctuations, and the SU(2) and SU(1,1) groups in quantum-optics applications. J. Opt. Soc. Am. B 2, 458 (1985)

    Article  ADS  Google Scholar 

  10. Wodkiewicz, K.: Reduced quantum fluctuations in the Josephson junction. Phys. Rev. B 32, 4750 (1985)

    Article  ADS  Google Scholar 

  11. Kitagawa, M., Ueda, M.: Sgueezed spin states. Phys. Rev. A 47, 5138 (1993)

    Article  ADS  Google Scholar 

  12. Wineland, D.J., Bollinger, J.J., Itano, W.M., Moore, F.L., Heinzen, D.J.: Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797 (1992)

    Article  ADS  Google Scholar 

  13. Wineland, D.J., Bollinger, J.J., Itano, W.M., Heinzen, D.J.: Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67 (1994)

    Article  ADS  Google Scholar 

  14. Caves, C.M.: Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693 (1981)

    Article  ADS  Google Scholar 

  15. Yurke, B.: Input states for enhancement of fermion interferometer sensitivity. Phys. Rev. Lett. 56, 1515 (1986)

    Article  ADS  Google Scholar 

  16. Kitagawa, M., Ueda, M.: nonlinear-interferometric generation of number-phase-correlated Fermion states. Phys. Rev. Lett. 67, 1852 (1991)

    Article  ADS  Google Scholar 

  17. Agarwal, G.S., Puri, R.R.: Cooperative behavior of atoms irradiated by broadband squeezed light. Phys. Rev. A 41, 3782 (1990)

    Article  ADS  Google Scholar 

  18. Agarwal, G.S., Puri, R.R.: Atomic states with spectroscopic squeezing. Phys. Rev. A 49, 4968 (1994)

    Article  ADS  Google Scholar 

  19. Puri, R.R.: Coherent and squeezed states on physical basis. Pramana J. Phys. 48, 787 (1997)

    Article  ADS  Google Scholar 

  20. Sørenson, A., Duan, L.M., Cirac, J.I., Zoller, P.: Many-particle entanglement with Bose–Einstein condensates. Nature 409, 63 (2001)

    Article  ADS  Google Scholar 

  21. Ulam-Orgikh, D., Kitagawa, M.: Spin squeezing and decoherence limit in Ramsey spectroscopy. Phys. Rev. A 64, 052106 (2001)

    Article  ADS  Google Scholar 

  22. Usha Devi, A.R., Mallesh, K.S., Sbaih, M.A., Nalini, K.B., Ramachandran, G.: Squeezing of a coupled state of two spinors. J. Phys. A: Math. Gen. 36, 5333 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  23. Usha Devi, A.R., Wang, X., Sanders, B.C.: Spin squeezing criterion with local unitary invariance. Quantum Inf. Process. 2, 209 (2003)

    Article  MathSciNet  Google Scholar 

  24. Usha Devi, A.R., Sudha, : Spin squeezing and quantum correlations. Asian J. Phys. 20, 131 (2011)

    Google Scholar 

  25. Wang, X., Sanders, B.C.: Spin squeezing and pairwise entanglement for symmetric multiqubit states. Phys. Rev. A 68, 03382 (2003)

    Google Scholar 

  26. Wang, X., Mølmer, K.: Pairwise entanglement in symmetric multi-qubit systems. Eur. Phys. J. D 18, 385 (2002)

    ADS  Google Scholar 

  27. Usha Devi, A.R., Uma, M.S., Prabhu, R., Sudha, : Non-local properties of a symmetric two-qubit system. J. Opt. B: Quantum Semiclass. Opt. 7, S740 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  28. Usha Devi, A.R., Uma, M.S., Prabhu, R., Sudha, : Local invariants and pairwise entanglement in symmetric multiqubit system. Int. J. Mod. Phys. B 20, 1917 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  29. Yan, D., Wang, X.G., Song, L.J., Zong, Z.G.: Mean spin direction and spin squeezing in superpositions of spin coherent states. Cent. Eur. J. Phys. 5, 367 (2007)

    Google Scholar 

  30. Usha Devi, A.R., Uma, M.S., Prabhu, R., Rajagopal, A.K.: Constraints on the uncertainties of entangled symmetric qubits. Phys. Lett. A 364, 203 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  31. Tóth, G., Knapp, C., Gühne, O., Briegel, H.J.: Spin squeezing and entanglement. Phys. Rev. A 79, 042334 (2009)

    Article  ADS  Google Scholar 

  32. Vitagliano, G., Hyllus, P., Egusquiza, I.L., Tóth, G.: Spin squeezing inequalities for arbitrary spin. Phys. Rev. Lett. 107, 240502 (2011)

    Article  ADS  Google Scholar 

  33. Li, S.: Spin squeezing of superposition. Int. J. Theor. Phys. 50, 719 (2011)

    Article  MathSciNet  Google Scholar 

  34. Divyamani, B.G., Sudha, Usha Devi, A.R.: Local unitary invariant spin-squeezing in multiqubit states. Int. J. Theor. Phys. 55, 2324 (2016)

    Article  MathSciNet  Google Scholar 

  35. Pezzé, L., Smerzi, A., Oberthaler, M.K., Schmied, R., Treutlein, P.: Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  36. Tura, J.: Characterizing Entanglement and Quantum Correlations Constrained by Symmetry. Springer, Berlin (2017)

    Book  Google Scholar 

  37. Hald, J., Sørensen, J.L., Schori, C., Polzik, E.S.: Spin squeezed atoms: a macroscopic entangled ensemble created by light. Phys. Rev. Lett. 83, 1319 (1999)

    Article  ADS  Google Scholar 

  38. Meyer, V., Rowe, M.A., Kielpinski, D., Sackett, C.A., Itano, W.M., Monroe, C., Wineland, D.J.: Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. Phys. Rev. Lett. 86, 5870 (2001)

    Article  ADS  Google Scholar 

  39. Fernholz, T., Krauter, H., Jensen, K., Sherson, J.F., Sørensen, A.S., Polzik, E.S.: Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement. Phys. Rev. Lett. 101, 073601 (2008)

    Article  ADS  Google Scholar 

  40. Estéve, J., Gross, C., Weller, A., Giovanazzi, S., Oberthaler, M.K.: Squeezing and entanglement in a Bose–Einstein condensate. Nature 455, 1216 (2008)

    Article  ADS  Google Scholar 

  41. Leroux, I.D., Schleier-Smith, M.H., Vuletić, V.: Implementation of cavity squeezing of a collective atomic spin. Phys. Rev. Lett. 104, 073602 (2010)

    Article  ADS  Google Scholar 

  42. Schleier-Smith, M.H., Leroux, I.D., Vuletić, V.: States of an ensemble of two-level atoms with reduced quantum uncertainty. Phys. Rev. Lett. 104, 073604 (2010)

    Article  ADS  Google Scholar 

  43. Inoue, R., Shin-Ichi-Ro, T., Namiki, R., Sagawa, T., Takahashi, Y.: Unconditional quantum-noise suppression via measurement-based quantum feedback. Phys. Rev. Lett. 110, 163602 (2013)

    Article  ADS  Google Scholar 

  44. Bohnet, J.G., Cox, K.C., Norcia, M.A., Weiner, J.M., Chen, Z., Thompson, J.K.: Reduced spin measurement back-action for a phase sensitivity ten times beyond the standard quantum limit. Nat. Photonics 8, 731 (2014)

    Article  ADS  Google Scholar 

  45. Auccaise, R., Araujo-Ferreira, A.G., Sarthour, R.S., Oliveira, I.S., Bonagamba, T.J., Roditi, I.: Spin squeezing in a quadrupolar nuclei NMR system. Phys. Rev. Lett. 114, 043604 (2015)

    Article  ADS  Google Scholar 

  46. Cox, K.C., Greve, G.P., Weiner, J.M., Thompson, J.K.: Deterministic squeezed states with collective measurements and feedback. Phys. Rev. Lett. 116, 093602 (2016)

    Article  ADS  Google Scholar 

  47. Hosten, O., Engelsen, N.J., Krishnakumar, R., Kasevich, M.A.: Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505 (2016)

    Article  ADS  Google Scholar 

  48. Vidal, J., Palacios, G., Mosser, R.: Entanglement in a second-order quantum phase transition. Phys. Rev. A 69, 022107 (2004)

    Article  ADS  Google Scholar 

  49. Lücke, B., Peise, J., Vitagliano, G., Arlt, J., Santos, L., Tóth, G., Klempt, C.: Detecting multiparticle entanglement of Dicke states. Phys. Rev. Lett. 112, 155304 (2014)

    Article  ADS  Google Scholar 

  50. Majorana, E.: Atomi orientati in campo magnetico variabile. Nuovo Cimento 9, 43 (1932)

    Article  Google Scholar 

  51. Usha Devi, A.R., Sudha, Rajgopal, A.K.: Majorana representation of symmetric multiqubit states. Quantum Inf. Process. 11, 685 (2012)

    Article  MathSciNet  Google Scholar 

  52. Bastin, T., Krins, S., Mathonet, P., Godefroid, M., Lamata, L., Solano, E.: Operational families of entanglement classes for symmetric N-qubit states. Phys. Rev. Lett. 103, 070503 (2009)

    Article  ADS  Google Scholar 

  53. Mathonet, P., Krins, S., Godefroid, M., Lamata, L., Solano, E., Bastin, T.: Entanglement equivalence of N-qubit symmetric states. Phys. Rev. A 81, 052315 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  54. Wei, T.-C., Goldbart, P.M.: Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 68, 042307 (2003)

    Article  ADS  Google Scholar 

  55. Sudha, Usha Devi, A.R., Rajagopal, A.K.: Monogamy of quantum correlations in three-qubit pure states. Phys. Rev. A 85, 012103 (2012)

    Article  ADS  Google Scholar 

  56. Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)

    Book  Google Scholar 

  57. Vidal, J.: Concurrence in collective models. Phys. Rev. A 73, 062318 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

KSA would like to thank the University Grants Commission for providing a BSR-RFSMS fellowship during the present work. ARU acknowledges the support of UGC MRP (Ref. MRP-MAJOR-PHYS-2013-29318). We thank Professor A. K. Rajagopal for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhilesh, K.S., Divyamani, B.G., Sudha et al. Spin squeezing in symmetric multiqubit states with two non-orthogonal Majorana spinors. Quantum Inf Process 18, 144 (2019). https://doi.org/10.1007/s11128-019-2244-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2244-3

Keywords

Navigation