Skip to main content
Log in

Anisotropic compact objects with colour-flavour-locked equation of state in Finch and Skea geometry

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We obtain a new class of models for compact stars in hydrostatic static equilibrium considering the colour-flavour-locked equation of state for a spherically symmetric static anisotropic matter distribution. We solve the Einstein field equation making use of the Finch and Skea ansatz for the metric function \(g_{rr}\). The exterior spacetime of the star is assumed to be described by the Schwarzschild metric. The matching of the interior solution with that of the exterior spacetime and the definition of a radius of the star are employed to determine the model parameters for a realistic star. Recent estimated data corresponding to the pulsar \(4U 1608-52\) have been utilized for the analysis of the physical viability of the proposed model. The method is applied for other dense stars (pulsars) to probe the physical features using the observed mass. We have also generated the M-R plot which is in good agreement with the observed pulsars mass and radius values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

This manuscript has no associated data, or the data will not be deposited. [Authors? comment: The present work is a theoretical study and adopted numerical analysis, and therefore, there is no data to be deposited.]

References

  1. P.C. Vaidya, R. Tikekar, J. Astrophys. Astron. 3, 325 (1982)

    Article  ADS  Google Scholar 

  2. M.C. Durgapal, R. Bannerji, Phys. Rev. D 27, 328 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  3. R. Tikekar, J. Math. Phys. 31, 2454 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Mukherjee, B.C. Paul, N. Dadhich, Class. Quant. Grav. 14, 3475 (1997)

    Article  ADS  Google Scholar 

  5. P.K. Chattopadhyay, B.C. Paul, Pramana J. Phys. 74, 513 (2010)

    Article  ADS  Google Scholar 

  6. P.K. Chattopadhyay, R. Deb, B.C. Paul, Int. J. Mod. Phys. D 21, 1250071 (2012)

    Article  ADS  Google Scholar 

  7. R. Deb, B.C. Paul, R. Tikekar, Pramana J. Phys. 79, 211 (2012)

    Article  ADS  Google Scholar 

  8. B.C. Paul, R. Deb, Astrophys. Space Sci. 354, 421 (2014)

    Article  ADS  Google Scholar 

  9. P.K. Chattopadhyay, R. Deb, B.C. Paul, Int. J. Theor. Phys. 53, 1666 (2014)

    Article  Google Scholar 

  10. B.C. Paul, S. Dey, Astrophys. Space Sci. 363, 11 (2018)

    Article  Google Scholar 

  11. A. Chanda, S. Dey, B.C. Paul, Eur. Phys. J. C 79, 502 (2019)

    Article  ADS  Google Scholar 

  12. S. Dey, B.C. Paul, Class. Quant. Grav. 37, 075017 (2020)

    Article  ADS  Google Scholar 

  13. S. Das, K.N. Singh, L. Baskey, F. Rahaman, A.K. Aria, Gen. Relat. Gravit. 53, 25 (2021)

    Article  ADS  Google Scholar 

  14. S. Das, F. Rahaman, L. Baskey, Euro. Phys. J. C 79, 853 (2019)

    Article  ADS  Google Scholar 

  15. R. Finch, J.E.F. Skea, Class. Quant. Gravit. 6, 467 (1989)

    Article  ADS  Google Scholar 

  16. B.P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017)

    Article  ADS  Google Scholar 

  17. B.P. Abbott, ApJ. 848, L12 (2017)

    Article  ADS  Google Scholar 

  18. B. P. Abbott et al., Class. Quant. Gravit. 34, 044001 (2017)

    Article  ADS  Google Scholar 

  19. L. Baiotti, Prog. Part. Nucl. Phys. 109, 103714 (2019)

    Article  Google Scholar 

  20. C. Chirenti, R. Gold, M.C. Miller, Astrophys. J. 837, 67 (2017)

    Article  ADS  Google Scholar 

  21. M. Alford, A. Schmitt, K. Rajagopal, T. Schafer, Rev. Mod. Phys. 80, 1455 (2008)

    Article  ADS  Google Scholar 

  22. G. Baym, T. Hatsuda, T. Kojo, P.D. Powell, Y. Song, T. Takatsuka, RPPh 81, 056902 (2018)

    ADS  Google Scholar 

  23. V. Paschalidis, K. Yagi, D. Alvarez-Castillo, D.B. Blaschke, A. Sedrakian, Phys. Rev. D 97, 084038 (2018)

    Article  ADS  Google Scholar 

  24. S. Han, M.A.A. Mamun, S. Lalit, C. Constantinou, M. Prakash, Phys. Rev. D 100, 103022 (2019)

    Article  ADS  Google Scholar 

  25. J.M. Lattimer, M. Prakash, Science 304, 536 (2004)

    Article  ADS  Google Scholar 

  26. M. Baldo, G.F. Burgio, Rep. Prog. Phys. 75, 026301 (2012)

    Article  ADS  Google Scholar 

  27. V. Graber, N. Andersson, M. Hogg, IJMPD 26, 1730015 (2017)

    Article  ADS  Google Scholar 

  28. P.A.M. Guichon, K. Saito, E. Rodionov, A.W. Thomas, Nucl. Phys. A 601, 349 (1996)

    Article  ADS  Google Scholar 

  29. P.J. Mohr, D.B. Newell, B.N. Taylor, Rev. Mod. Phys. 88, 035009 (2016)

    Article  ADS  Google Scholar 

  30. P. Danielewicz, R. Lacey, W.G. Lynch, Science 298, 1592 (2002)

    Article  ADS  Google Scholar 

  31. M. Wang et al., Chin. Phys. C 36, 003 (2012)

    ADS  Google Scholar 

  32. I. Angeli, K.P. Marinova, Atomic Data Nucl. Data Tables 99, 69 (2013)

    Article  ADS  Google Scholar 

  33. A. Feliciello, T. Nagae, Rep. Prog. Phys. 78, 096301 (2015)

    Article  ADS  Google Scholar 

  34. J.W.T. Hessels, S.M. Ransom, I.H. Stairs, P.C.C. Freire, V.M. Kaspi, F. Camilo, Science 311, 1901 (2006)

    Article  ADS  Google Scholar 

  35. P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hes-sels, Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  36. J. Antoniadis et al., Science 340, 448 (2013)

    Article  ADS  Google Scholar 

  37. E. Fonseca et al., ApJ 832, 167 (2016)

    Article  ADS  Google Scholar 

  38. Z. Arzoumanian et al., Astrophys. J. Suppl. Ser. 235, 37 (2018)

    Article  ADS  Google Scholar 

  39. H.T. Cromartie et al., Nature Astron. 4, 72 (2020)

    Article  ADS  Google Scholar 

  40. F. Ozel, P. Freire, Astron. Astrophys. 54, 401 (2016)

    Article  Google Scholar 

  41. B.P. Abbott et al., Phys. Rev. X 9, 011001 (2019)

    Google Scholar 

  42. M. Alford, K. Rajagopal, F. Wilczek, Nucl. Phys. B 537, 443 (1999)

    Article  ADS  Google Scholar 

  43. K. Rajagopal, F. Wilczek, Phys. Rev. Lett. 86, 3492 (2001)

    Article  ADS  Google Scholar 

  44. S. Thirukkanesh, A. Kaisavelu, M. Govender, Eur. Phys. J. C 80, 214 (2020)

    Article  ADS  Google Scholar 

  45. V. Canuto, Ann. Rev. Astron. Astrophys. 12, 167 (1974)

    Article  ADS  Google Scholar 

  46. L. Herrera, N.O. Santos, Astrophys. J. 438, 308 (1995)

    Article  ADS  Google Scholar 

  47. V.V. Usov, Phys. Rev. D 70, 067301 (2004)

    Article  ADS  Google Scholar 

  48. R.F. Sawyer, Phys. Rev. Lett. 29, 382 (1972)

    Article  ADS  Google Scholar 

  49. A.I. Sokolov, JETP 79, 1137 (1980)

    Google Scholar 

  50. F. Weber, Pulsars as astrophysical observatories for nuclear and particle physics (IOP Publishing, Bristol, 1999)

    Google Scholar 

  51. R. Kippenhahn, A. Weigert, Stellar structure and evolution (Springer, Berlin, 1990)

    Book  MATH  Google Scholar 

  52. R. Tikekar, V.O. Thomas, Pramana J. Phys. 64, 5 (2005)

    Article  ADS  Google Scholar 

  53. R. Sharma, B.S. Ratanpal, Int. J. Mod. Phys. D 13, 1350074 (2013)

    Article  Google Scholar 

  54. D.M. Pandya, V.O. Thomas, R. Sharma, Astrophys. Space Sci. 356, 285 (2015)

    Article  ADS  Google Scholar 

  55. R. Sharma, S. Das, S. Thirukkanesh, Astro. Phys. Space Sci. 362, 232 (2017)

    Article  ADS  Google Scholar 

  56. M. Kalam, A.A. Usmani, F. Rahaman, S.M. Hossein, I. Karar, R. Sharma, Int. J. Theor. Phys. 52, 3319 (2013)

    Article  Google Scholar 

  57. A. Banerjee, F. Rahaman, K. Jotania, R. Sharma, I. Karar, Gen. Relativ. Gravit. 45, 717 (2013)

    Article  ADS  Google Scholar 

  58. P. Bhar, F. Rahaman, R. Biswas, H.I. Fatima, Commun. Theor. Phys. 62, 221 (2014)

    Article  Google Scholar 

  59. S. Hansraj, S.D. Maharaj, Int. J. Mod. Phys. D 8, 1311 (2006)

    Article  ADS  Google Scholar 

  60. S.D. Maharaj, D.K. Matondo, P.M. Takisa, Int. J. Mod. Phys. D 26, 1750014 (2016)

    Article  ADS  Google Scholar 

  61. B.S. Ratanpal, D.M. Pandya, R. Sharma, S. Das, Astrophys. Space Sci. 362, 82 (2017)

    Article  ADS  Google Scholar 

  62. N. Dadhich, S. Hansraj, B. Chilambwea, Int. J. Mod. Phys. D 26, 1750056 (2017)

    Article  ADS  Google Scholar 

  63. A. Molina, N. Dadhich, A. Khugaev, Gen. Relativ. Gravit. 49, 96 (2017)

    Article  ADS  Google Scholar 

  64. L.S. Rocha, A. Bernardo, M.G.B. de Avellar, J.E. Horvath, Astronomische Nachrichten 340, 180 (2019)

    Article  ADS  Google Scholar 

  65. E. Witten, Phys. Rev. D 30, 272 (1984)

    Article  ADS  Google Scholar 

  66. G. Lugones, J.E. Horvath, Astron. Astrophys. 403, 173 (2003)

    Article  ADS  Google Scholar 

  67. L.S. Rocha, A. Bernardo, M.G.B. de Avellar, J.E. Horvath arXiv:1906.11311

  68. S. Thirukkanesh, F.C. Ragel, Chin. Phys. C 41, 015102 (2017)

    Article  ADS  Google Scholar 

  69. S. Thirukkanesh, F.C. Ragel, Pramana J. Phys. 81, 275 (2013)

    Article  ADS  Google Scholar 

  70. S. Gedela, N. Pant, R.P. Pant, J. Upreti, IJMPA 34, 1950179 (2019)

    Article  ADS  Google Scholar 

  71. K.N. Singh, S. Das, P. Bhar, M. Rahaman, F. Rahaman, Int. J. Mod. Phys. A 36, 2150192 (2021)

    Article  ADS  Google Scholar 

  72. W. Israel, Nuovo Cimento B 44, 48 (1966)

    Article  Google Scholar 

  73. S. O’Brien, J. L. Synge, Comm. of the Dublin Inst. for Advanced Studies, A. No.9, (1952)

  74. M.S.R. Delgaty, K. Lake, Comput. Phys. Commun. 115, 395 (1998)

    Article  ADS  Google Scholar 

  75. F. Ozel et al., ApJ 820, 28 (2016)

    Article  ADS  Google Scholar 

  76. H. Heintzmann, W. Hillebrandt, Astron. Astrophys. 38, 51 (1975)

    ADS  Google Scholar 

  77. L. Herrera, Phys. Lett. A 165, 206 (1992)

    Article  ADS  Google Scholar 

  78. H. Abreu, H. Hernandez, L.A. Nunez, Class. Quant. Gravit. 24, 4631 (2007)

    Article  ADS  Google Scholar 

  79. B. K. Harrison, K. S. Thorne, M. Wakano, J. A. Wheeler, Gravitation Theory and Gravitational Collapse (1965)

  80. Y.B. Zeldivich, I.D. Navikov, Relativistic Astrophysics, Stars and Relativity, vol. 1 (University of Chicago Press, Chicago, 1971)

    Google Scholar 

  81. D. Deb, B.K. Guha, F. Rahaman, S. Ray, Phys. Rev. D 97, 084026 (2018)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

BCP, RS and SD gratefully acknowledge support from the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India, under its Visiting Research Associateship Programme. BCP would like to thank University of North Bengal for awarding a minor research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikash Chandra Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, B.C., Das, S. & Sharma, R. Anisotropic compact objects with colour-flavour-locked equation of state in Finch and Skea geometry. Eur. Phys. J. Plus 137, 525 (2022). https://doi.org/10.1140/epjp/s13360-022-02746-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02746-z

Navigation