Skip to main content
Log in

Comparison of strange particle production measurements in central PbPb collisions at \(\sqrt {s_{NN} }\) = 2.76 and 5.02 TeV by using Monte Carlo simulation models EPOS-1.99 and EPOS-LHC

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present paper is a comparative study of transverse momentum spectra of \(K_{s}^{0}\) − mesons, \(\Lambda - \) hyperons, multi-strange baryons \({\Xi }^{ - }\), \({\overline{\Xi }}^{ + } ,\) \(\Omega^{ - }\) and \(\overline{\Omega }^{ + }\) in the most central Pb–Pb collisions at \(\sqrt {s_{NN} }\) = 2.76 and 5.02 TeV for the mid rapidity interval \(\left| y \right|\)< 0.5 by using two different Monte Carlo simulation models, EPOS-1.99 and EPOS-LHC. Particle ratios \(\Lambda /K_{s}^{0} \) are studied at the two center-of-mass energies to understand the enhancement of heavier hadrons over the lighter ones. Nuclear modification factors are also constructed for multi-strange baryons at \(\sqrt {s_{NN} }\) = 2.76 TeV to study particle production and energy loss mechanisms. The validity of these models is tested for Pb–Pb collisions at \(\sqrt {s_{NN} }\) = 2.76 and 5.02 TeV by comparing the simulation data with ALICE experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

This manuscript has associated data available online on data repository. [Authors’ comment: The ALICE experimental data are taken from https://www.hepdata.net/ from the papers https://doi.org/10.17182/hepdata.61857 and https://doi.org/10.17182/hepdata.62098].

References

  1. J. Adams et al., (STAR Collaboration) Nucl. Phys. A 757, 102 (2005)

    Article  ADS  Google Scholar 

  2. K. Adcox et al., (PHENIX Collaboration) Nucl. Phys. A 757, 184 (2005)

    Article  ADS  Google Scholar 

  3. M. Gyulassy et al., Nucl. Phys. A 750, 30 (2005)

    Article  ADS  Google Scholar 

  4. J. Adam et al., Phys. Rev. C 95, 064606 (2017)

    Article  ADS  Google Scholar 

  5. P. Koch et al., Phys. Rept. 142, 167 (1986)

    Article  ADS  Google Scholar 

  6. J. Rafelski, Eur. Phys. ST 155, 139 (2008)

    Article  Google Scholar 

  7. K.A. Bugaev et al., Ukr. J. Phys. 61, 8 (2016)

    Article  Google Scholar 

  8. G. Bocquet et al., (UA1 Collaboration) Phys. Lett. B 366, 441 (1996)

    Article  ADS  Google Scholar 

  9. R.E. Ansorge et al., (UA5 Collaboration) Nucl. Phys. B 328, 36 (1989)

    Article  ADS  Google Scholar 

  10. R.E. Ansorge et al., (UA5 Collaboration) Phys. Lett. B 199, 311 (1987)

    Article  ADS  Google Scholar 

  11. R. Hagedorn, Riv. Nuovo Cim. 6, 1 (1983)

    Article  Google Scholar 

  12. J.D. Bjorken, FERMILAB–Pub–82/59–THY, USA (1982)

  13. D. d’Enterria, R. Stock, 23, 99 (2010)

  14. S. Chatrchyan et al., (CMS Collaboration) Eur. Phys. J. C 72, 1945 (2012)

    Article  ADS  Google Scholar 

  15. B. Abelev et al., (ALICE Collaboration) Phys. Lett. B 720, 52 (2013)

    Article  ADS  Google Scholar 

  16. G. Aad et al., (ATLAS Collaboration) JHEP 09, 050 (2015)

    ADS  Google Scholar 

  17. K. Aamodt, et al., (ALICE Collaboration), Phys. Lett. B 696 (2011).

  18. Z. Yin et al., (ALICE Collaboration) Intl. J. Mod. Phys. Conf. Series 29, 1460228 (2014)

    Article  Google Scholar 

  19. V. Khachatryan et al., (CMS Collaboration) JHEP 04, 039 (2017)

    ADS  Google Scholar 

  20. J. Rafelski, Eur. Phys. J. Spec. Top. 155, 139 (2008)

    Article  Google Scholar 

  21. R.J. Fries et al., Phys. Rev. C 68, 044902 (2003)

    Article  ADS  Google Scholar 

  22. V. Topor et al., Phys. Rev. C 70, 064906 (2004)

    Article  ADS  Google Scholar 

  23. S.J. Brodsky et al., Phys. Lett. B 668, 111 (2008)

    Article  ADS  Google Scholar 

  24. C. Shen et al., Comput. Phys. Commun. 199, 61 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. W. Zhao et al., Eur. Phys. J. C 77, 645 (2017)

    Article  ADS  Google Scholar 

  26. S. McDonald et al., Phys. Rev. C 95, 064913 (2017)

    Article  ADS  Google Scholar 

  27. V. Greco et al., Phys. Rev. Lett. 90, 202302 (2003)

    Article  ADS  Google Scholar 

  28. R.J. Fries et al., Phys. Rev. Lett. 90, 202303 (2003)

    Article  ADS  Google Scholar 

  29. V. Minissale et al., Phys. Rev. C 92, 054904 (2015)

    Article  ADS  Google Scholar 

  30. A. Arif, Y. Ali, M.Q. Haseeb, Eur. Phys. J. Plus 136, 737 (2021)

    Article  ADS  Google Scholar 

  31. A. Arif et al., Int. J. Mod. Phys. E 30, 2150068 (2021)

    Article  ADS  Google Scholar 

  32. A. Arif, Y. Ali, Eur. Phys. J. Plus 136, 951 (2021)

    Article  Google Scholar 

  33. M. Šefcík, et al., (ALICE Collaboration) EPJ Web Conf. 171 13007 (2018)

  34. P. Kalinak, (ALICE collaboration) EPS-HEP (2017)

  35. T. Pierog, K. Werner, The EPOS Model, Proceedings of the 31st ICRC, Łodz (2009)

  36. T. Pierog et al., Phys. Rev. C 92, 034906 (2015)

    Article  ADS  Google Scholar 

  37. K. Werner et al., Phys. Rev. C 74, 044902 (2006)

    Article  ADS  Google Scholar 

  38. M. Hladik et al., Phys. Rev. Lett. 86, 3506 (2001)

    Article  ADS  Google Scholar 

  39. N.N. Kalmykov et al., Russ. Acad. Sci. Phys. 58, 1966 (1994)

    Google Scholar 

  40. R.J. Fries, J. Phys. G 30, S853 (2004)

    Article  ADS  Google Scholar 

  41. K. Werner, Nucl. Phys. B 81, 175 (2008)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the COMSATS University Islamabad, Islamabad campus, Pakistan, which provided all possible facilities and a suitable platform to perform the simulations and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atif Arif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arif, A., Ali, Y. & Haseeb, M.Q. Comparison of strange particle production measurements in central PbPb collisions at \(\sqrt {s_{NN} }\) = 2.76 and 5.02 TeV by using Monte Carlo simulation models EPOS-1.99 and EPOS-LHC. Eur. Phys. J. Plus 137, 512 (2022). https://doi.org/10.1140/epjp/s13360-022-02739-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02739-y

Navigation