Skip to main content
Log in

Propagating chirped lambert W-kink solitons for ac-driven higher-order nonlinear Schrödinger equation with quadratic-cubic nonlinearity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We report a new kind of exact soliton-like solution for the quadratic-cubic nonlinear Schrödinger equation in presence of higher-order terms and driven by an external source. These localized solutions have recently been found as kink solutions for a parity breaking \(\phi ^6\) field theory and are expressed in terms of Lambert W function, and hence we refer to them as Lambert W-kink solitons. The solutions are necessarily chirped and dark in nature. The chirp is shown to have non-trivial dependence on the amplitude, and hence can be controlled by evolution coefficients as well as the intensity of the solitons. Variation of various coefficients concerning the external source strength has been studied for competing and non-competing quadratic-cubic nonlinearity. We explore the conditions to lock the phase of propagating wave either in- or out of-phase to the external source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. A. Amado, A. Mohammadi, Eur. Phys. J. C 80, 576 (2020)

    Article  ADS  Google Scholar 

  2. R.M. Corless, G.H. Gonnet, D.E. Hare, D.J. Jeffrey, D.E. Knuth, Adv. Comput. Math. 5, 329 (1996)

    Article  MathSciNet  Google Scholar 

  3. T.C. Scott, A. Lüchow, D. Bressanini, J.D. Morgan, Phys. Rev. A 75, 060101 (2007)

    Article  ADS  Google Scholar 

  4. T.C. Scott, R.B. Mann, R.E. Martinez II., Applicable algebra in engineering. Communicat Comput 17, 41 (2006)

    Google Scholar 

  5. S.R. Valluri, M. Gil, D.J. Jeffrey, S. Basu, J. Math. Phys. 50, 102103 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  6. O. Steinvall, App. Opt. 48, B1 (2009)

    Article  Google Scholar 

  7. D. Veberič, Comput. Phys. Commun. 183, 2622 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  8. N. Nisha, A. Maan, T.S. Goyal, C.N. Raju Kumar, Phys. Lett. A 384, 126675 (2020)

    Article  MathSciNet  Google Scholar 

  9. E. Kengne, Eur. Phys. J. Plus 136, 266 (2021)

    Article  Google Scholar 

  10. G.P. Agrawal, Nonlinear fiber optics (Academic Press, San Diego, 2001)

    MATH  Google Scholar 

  11. L.P. Pitaevskii, S. Stringari, Bose–Einstein Condensation (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  12. V.E. Zakharov, Sov. Phys. JETP 35, 908 (1972)

    ADS  Google Scholar 

  13. T.J. Kawahara, Plasma Phys. 18, 305 (1977)

    Article  ADS  Google Scholar 

  14. A.B. Ustinov, V.E. Demidov, A.V. Kondrashov, B.A. Kalinikos, S.O. Demokritov, Phys. Rev. Lett. 106, 017201 (2011)

    Article  ADS  Google Scholar 

  15. A.J. Davey, Fluid Mech. 51, 477 (1972)

    Article  MathSciNet  Google Scholar 

  16. A. Hasegawa, F. Tappert, App. Phys. Lett. 23, 142 (1973)

    Article  ADS  Google Scholar 

  17. L.F. Mollenauer, R.H. Stolen, J.P. Gordon, Phys. Rev. Lett. 45, 1095 (1980)

    Article  ADS  Google Scholar 

  18. A. Hasegawa, Y. Kodama, Solitons in optical communications (Oxford University Press, New York, 1995)

    MATH  Google Scholar 

  19. F.M. Mitschke, L.F. Mollenauer, Opt. Lett. 11, 659 (1986)

    Article  ADS  Google Scholar 

  20. Y. Kodama, A. Hasegawa, IEEE J. Quant. Electron. 23, 510 (1987)

    Article  ADS  Google Scholar 

  21. D.J. Kaup, A.C. Newell, Proc. R. Soc. London A 361, 413 (1978)

    Article  ADS  Google Scholar 

  22. B.A. Malomed, Phys. Rev. E 51, 864 (1995)

    Article  ADS  Google Scholar 

  23. G. Cohen, Phys. Rev. E 61, 874 (2000)

    Article  ADS  Google Scholar 

  24. T.S. Raju, P.K. Panigrahi, K. Porsezian, Phys. Rev. E 72, 046612 (2005)

    Article  ADS  Google Scholar 

  25. T.S. Raju, P.K. Panigrahi, Phys. Rev. A 84, 033807 (2011)

    Article  ADS  Google Scholar 

  26. D.J. Kaup, A.C. Newell, Phys. Rev. B 18, 5162 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  27. P.S. Lomdahl, M.R. Samuelsen, Phys. Rev. A 34, 664 (1986)

    Article  ADS  Google Scholar 

  28. K. Nozaki, N. Bekki, Physica D 21, 381 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  29. L. Friedland, Phys. Rev. E 58, 3865 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  30. A. Goyal Alka, T.S. Raju, C.N. Kumar, Appl. Math. Comput 218, 11931 (2012)

  31. I.V. Barashenkov, E.V. Zemlyanaya, M. Bär, Phys. Rev. E 64, 016603 (2001)

  32. T.S. Raju, C.N. Kumar, P.K. Panigrahi, J. Phys. A: Math. Gen. 38, 271 (2005)

    Article  Google Scholar 

  33. V.M. Vyas, T.S. Raju, C.N. Kumar, P.K. Panigrahi, J. Phys. A: Math. Gen. 39, 9151 (2006)

    Article  ADS  Google Scholar 

  34. Z. Yan, J. Phys. A: Math. Gen. 39, 401 (2006)

    Article  ADS  Google Scholar 

  35. P.K. Das, D. Singh, M.M. Panja, Optik 174, 433 (2018)

    Article  ADS  Google Scholar 

  36. P.K. Das, Optik 195, 163134 (2019)

    Article  ADS  Google Scholar 

  37. P.K. Das, Phys. Script. 95, 105212 (2020)

    Article  ADS  Google Scholar 

  38. P.K. Das, Opt. Quant. Electron. 53, 6 (2021)

    Article  Google Scholar 

  39. P.K. Das, Optik 223, 165293 (2020)

    Article  ADS  Google Scholar 

  40. H. Triki et al., Opt. Commun. 437, 392 (2019)

    Article  ADS  Google Scholar 

  41. R. Rajaraman, Solitons and instantons (North-Holland, Amsterdam, 1982)

    MATH  Google Scholar 

  42. A.T. Avelar, D. Bazeia, W.B. Cardoso, L. Losano, Phys. Lett. A 374, 222 (2009)

    Article  ADS  Google Scholar 

  43. A.T. Avelar, D. Bazeia, L. Losano, R. Menezes, Eur. Phys. J. C 55, 133 (2008)

    Article  ADS  Google Scholar 

  44. A.M. Mateo, V. Delgado, Phys. Rev. A 77, 013617 (2008)

    Article  ADS  Google Scholar 

  45. M.A. Karpierz, Opt. Lett. 20, 1677 (1995)

    Article  ADS  Google Scholar 

  46. S. Trillo, A.V. Buryak, Y.S. Kivshar, Opt. Commun. 122, 200 (1996)

    Article  ADS  Google Scholar 

  47. O. Bang, Y.S. Kivshar, A.V. Buryak, Opt. Lett. 22, 1680 (1997)

    Article  ADS  Google Scholar 

  48. J. Moses, F.W. Wise, Phy. Rev. Lett. 97, 073903 (2006)

    Article  ADS  Google Scholar 

  49. K.K. De, A. Goyal, C.N. Kumar, A.K. Sarma, Commun. Nonlinear Sci. Numer. Simulat. 20, 629 (2015)

    Article  ADS  Google Scholar 

  50. J. Fujioka, E. Corte, R. Pérez-Pascual, R.F. Rodrÿguez, A. Espinosa, B.A. Malomed, Chaos 21, 033120 (2011)

  51. W.B. Cardoso, H.L.C. Couto, A.T. Avelar, D. Bazeia, Commun. Nonlinear Sci. Numer. Simul. 48, 474 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  52. R. Pal, S. Loombaa, C.N. Kumar, Ann. Phys. 387, 213 (2017)

    Article  ADS  Google Scholar 

  53. R. Pal, H. Kaur, A. Goyal, C.N. Kumar, J. Mod. Opt. 66, 571 (2019)

    Article  ADS  Google Scholar 

  54. V.M. Vyas, P. Patel, P.K. Panigrahi, C.N. Kumar, W. Greiner, Phys. Rev. A 78, 021803 (2008)

    Article  ADS  Google Scholar 

  55. B.A. Malomed, J. Opt. Soc. Am. B 13, 677 (1996)

    Article  ADS  Google Scholar 

  56. M. Desaix, L. Helczynski, D. Anderson, M. Lisak, Phys. Rev. E 65, 056602 (2002)

    Article  ADS  Google Scholar 

  57. V.I. Kruglov, A.C. Peacock, J.D. Harvey, Phys. Rev. Lett. 90, 113902 (2003)

    Article  ADS  Google Scholar 

  58. M. Neuer, K.H. Spatschek, Z. Li, Phys. Rev. E 70, 056605 (2004)

    Article  ADS  Google Scholar 

  59. A. Goyal, V.K. Sharmaa, T.S. Raju, C.N. Kumar, J. Mod. Opt. 61, 315 (2014)

    Article  ADS  Google Scholar 

  60. A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T.F. Krauss, B.J. Eggleton, Nat. Commun. 5, 3160 (2014)

    Article  ADS  Google Scholar 

  61. J. Ishizuka, Y. Yanase, Phys. Rev. B 98, 224510 (2018)

    Article  ADS  Google Scholar 

  62. J. Ruhman, V. Kozii, F. Liang, Phys. Rev. Lett. 118, 227001 (2017)

    Article  ADS  Google Scholar 

  63. N. Read, D. Green, Phys. Rev. B 61, 10267 (2000)

    Article  ADS  Google Scholar 

  64. B.I. Abelev, M.M. Aggarwal et al., Phys. Rev. Lett. 103, 251601 (2009)

    Article  ADS  Google Scholar 

  65. I.C. Christov, R.J. Decker, A. Demirkaya, V.A. Gani, P.G. Kevrekidis, A. Khare, A. Saxena, Phys. Rev. Lett. 122, 171601 (2019)

  66. E. Magyari, Z. Phys. B 43, 345 (1981)

  67. N.H. Christ, T.D. Lee, Phys. Rev. D 15, 1606 (1975)

    Article  ADS  Google Scholar 

  68. S.N. Behra, A. Khare, Pramana-J. Phys. 15, 245 (1980)

    Article  ADS  Google Scholar 

  69. A.G. Alka, R. Gupta, C.N. Kumar, Phys. Rev. A 84, 063830 (2011)

Download references

Acknowledgements

A.G. would like to thank Science and Engineering Research Board (SERB), Government of India for the award of SERB Start-Up Research Grant (Young Scientists) under the sanction no: YSS/2015/001803 during the course of this work. S.B. would like to thank the Department of Science and Technology (DST), Government of India for Junior Research Fellowship under Inspire Scheme through Fellow number IF190338.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Goyal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maan, N., Bhatia, S., Goyal, A. et al. Propagating chirped lambert W-kink solitons for ac-driven higher-order nonlinear Schrödinger equation with quadratic-cubic nonlinearity. Eur. Phys. J. Plus 137, 519 (2022). https://doi.org/10.1140/epjp/s13360-022-02721-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02721-8

Navigation