Skip to main content
Log in

Five performance indicators for a universal generalized irreversible steady flow cycle including seven specific refrigeration cycles

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Cycle model extension and universalization with different performance indicators and with all of loss items is an important topic in finite time thermodynamics (FTT) studies. A model of universal generalized irreversible steady flow refrigeration cycle including two irreversible endothermic, two irreversible exothermic and two irreversible adiabatic processes with three loss items of heat resistance, thermal leakage and internal irreversibility effect is established by using FTT. Expressions for five performance indicators, including cooling load, COP, exergetic loss rate, exergetic output rate and ecological function of the universal cycle model are derived. Expressions for five performance indicators obtained include those of seven specific refrigeration cycles, that is, Diesel, Brayton, Otto, Atkinson, Miller, Dual and Carnot refrigeration cycles, with various loss combinations of three loss items. Performance indicator analyses and optimizations of the universal cycle model are performed, and effects of cycle processes and loss items on the five performance indicators of the universal cycle are illustrated by using numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

\(\dot{A}\) :

Exergetic output rate of the cycle (kW)

\(C_{i}\) :

Thermal leakage coefficient (kWK1)

\(C_{P}\) :

Constant pressure specific heat (kWkg1 K1)

\(C_{v}\) :

Constant volume specific heat (kWkg1 K1)

\(E\) :

Ecological function of the cycle (kW)/effectiveness of the heat exchanger

\(F\) :

Heat transfer surface area (m2)

\(k\) :

Ratio of the specific heats

\(\dot{m}\) :

Mass flow rate (kgs1)

\(N\) :

Number of heat transfer units

\(P\) :

Power input of the cycle (kW)

\(\dot{Q}\) :

Rate of heat transfer (kW)

\(R\) :

Cooling load of the cycle (kW)

\(\dot{q}\) :

Thermal leakage rate (kW)

\(S\) :

Entropy (kJ K1)

\(\dot{S}\) :

Entropy generation rate of the cycle (kW K1)

\(T\) :

Temperature (K)

\(U\) :

Heat conductance (kWK1)

\(x\) :

Temperature ratio of the working fluid

\(y\) :

Temperature ratio of the working fluid

\(\alpha\) :

Heat transfer coefficient (kWK1 m2)

\(\phi\) :

Internal irreversibility effect coefficient

\(\varepsilon\) :

COP

\(\tau\) :

Temperature ratio of the heat reservoirs

\(E\) :

Ecological

\(H,H1,H2\) :

Hot side/heat source

\(in1,in2\) :

Input

\(L,L_{1} ,L_{2}\) :

Cold side/heat sink

\(\max\) :

Maximum

\(out1,out2\) :

Output

\(P\) :

Power

\(0\) :

Ambient

1, 2, 3, 4, 5, 6:

State points of the model cycle

COP:

Coefficient of performance

ECO:

Ecological function

EGR:

Entropy generation rate

ELR:

Exergetic loss rate

EOR:

Exergetic output rate

FTT:

Finite time thermodynamics

GISF:

Generalized irreversible steady flow

References

  1. B. Andresen, Finite-Time Thermodynamics. Physics Laboratory (University of Copenhagen, Copenhagen, 1983)

    Google Scholar 

  2. M. Feidt, Thermodynamique et Optimisation Energetique des Systems et Procedes, 2nd edn. (Technique et Documentation, Lavoisier, Paris, 1996)

    Google Scholar 

  3. A. Bejan, Entropy Generation Minimization (CRC Press, Boca Raton FL, 1996)

    MATH  Google Scholar 

  4. K.H. Hoffmann, J.M. Burzler, S. Schubert, Endoreversible thermodynamics. J. Non- Equilib. Thermodyn. 22(4), 311–355 (1997)

    MATH  Google Scholar 

  5. L.G. Chen, C. Wu, F.R. Sun, Finite time thermodynamic optimization or entropy generation minimization of energy systems. J. Non-Equilib. Thermodyn. 24(4), 327–359 (1999)

    Article  ADS  MATH  Google Scholar 

  6. R.S. Berry, P. Salamon, B. Andresen, How it all began. Entropy 22(8), 908 (2020)

    Article  ADS  Google Scholar 

  7. M. Feidt, M. Costea, A new step in the optimization of the Chambadal model of the Carnot engine. Entropy 24(1), 84 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  8. J.F. Shen, L.G. Chen, Y.L. Ge, F.L. Zhu, Z.X. Wu, Optimum ecological performance of irreversible reciprocating Maisotsenko-Brayton cycle. Euro. Phys. J. Plus 134(6), 293 (2019)

    Article  Google Scholar 

  9. C.Q. Tang, L.G. Chen, H.J. Feng, Y.L. Ge, Four-objective optimization for an improved irreversible closed modified simple Brayton cycle. Entropy 23(3), 282 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  10. E. Açıkkalp, Methods used for evaluation actual power generating thermal cycles and comparing them. Int. J. Elec. Power 69, 85–89 (2015)

    Article  Google Scholar 

  11. Y.L. Ge, L.G. Chen, H.J. Feng, Ecological optimization of an irreversible Diesel cycle. Euro. Phys. J. Plus 136(2), 198 (2021)

    Article  Google Scholar 

  12. S.S. Shi, L.G. Chen, Y.L. Ge, F.J. Feng, Performance optimizations with single-, bi-, tri- and quadru-objective for irreversible Diesel cycle. Entropy 23(7), 826 (2021)

    Article  ADS  Google Scholar 

  13. Y.L. Ge, L.G. Chen, H.J. Feng, Optimal piston motion configuration for irreversible Otto cycle heat engine with maximum ecological function objective. Energy Rep. 8, 2875–2887 (2022)

    Article  Google Scholar 

  14. H.J. Feng, Z.X. Wu, L.G. Chen, Y.L. Ge, Constructal thermodynamic optimization for dual-pressure organic Rankine cycle in waste heat utilization system. Energy Convers. Manag. 227, 113585 (2021)

    Article  Google Scholar 

  15. H.J. Feng, W.J. Chen, L.G. Chen, W. Tang, Power and efficiency optimizations of an irreversible regenerative organic Rankine cycle. Energy Convers. Manag. 220, 113079 (2020)

    Article  Google Scholar 

  16. E. Açıkkalp, S.Y. Kandemir, M.H. Ahmadi, Solar driven Stirling engine - chemical heat pump - absorption refrigerator hybrid system as environmental friendly energy system. J. Environ. Manag. 232, 455–461 (2019)

    Article  Google Scholar 

  17. L.G. Chen, B. Yang, H.J. Feng, Y.L. Ge, S.J. Xia, Performance optimization of an open simple-cycle gas turbine combined cooling, heating and power plant driven by basic oxygen furnace gas in China’s steelmaking plants. Energy 203, 117791 (2020)

    Article  Google Scholar 

  18. Z.X. Wu, L.G. Chen, H.J. Feng, Y.L. Ge, Constructal thermodynamic optimization for a novel Kalina-organic Rankine combined cycle to utilize waste heat. Energy Rep. 7, 6095–6106 (2021)

    Article  Google Scholar 

  19. E. Açıkkalp, L.G. Chen, M.H. Ahmadi, Comparative performance analyses of molten carbonate fuel cell-alkali metal thermal to electric converter and molten carbonate fuel cell-thermoelectric generator hybrid systems. Energy Rep. 6, 10–16 (2020)

    Article  Google Scholar 

  20. L.G. Chen, F.K. Meng, Y.L. Ge, H.J. Feng, S.J. Xia, Performance optimization of a class of combined thermoelectric heating devices. Sci. China Technol. Sci. 63(12), 2640–2648 (2020)

    Article  ADS  Google Scholar 

  21. S.S. Qiu, Z.M. Ding, L.G. Chen, Performance evaluation and parametric optimum design of irreversible thermionic generators based on van der Waals heterostructures. Energy Convers. Manag. 225, 113360 (2020)

    Article  Google Scholar 

  22. L.G. Chen, Z.W. Meng, Y.L. Ge, F. Wu, Performance analysis and optimization for irreversible combined quantum Carnot heat engine working with ideal quantum gases. Entropy 23(5), 536 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  23. E. Açıkkalp, N. Caner, Application of exergetic sustainability index to a nano - scale irreversible Brayton cycle operating with ideal Bose and Fermi gasses. Phys. Lett. A 379(36), 1990–1997 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. E. Açıkkalp, N. Caner, Determining of the optimum performance of a nano scale irreversible Dual cycle with quantum gases as working fluid by using different methods. Physica A 433, 247–258 (2015)

    Article  ADS  MATH  Google Scholar 

  25. E. Açıkkalp, Analysis of a Brownian heat engine with ecological criteria. Eur. Phys. J. Plus. 131(12), 426 (2016)

    Article  Google Scholar 

  26. C.Z. Qi, L.G. Chen, Z.M. Ding, Y.L. Ge, H.J. Feng, A generalized irreversible thermal Brownian motor cycle and its optimal performance. Eur. Phys. J. Plus. 136(11), 1120 (2021)

    Article  Google Scholar 

  27. C.Z. Qi, L.G. Chen, Y.L. Ge, H.J. Feng, Z.C. He, Heat transfer effect on the performance of Brownian heat engine. Energy Rep. 8, 3002–3010 (2022)

    Article  Google Scholar 

  28. M. Feidt, Thermodynamics applied to reverse cycle machines, a review. Int. J. Refrig. 33(7), 1327–1342 (2010)

    Article  Google Scholar 

  29. M. Feidt, Evolution of thermodynamic modelling for three and four heat reservoirs reverse cycle machines: a review and new trends. Int. J. Refrig. 36(1), 8–23 (2013)

    Article  Google Scholar 

  30. Y. Goth, M. Feidt, Optimum COP for endoreversible heat pump or refrigerating machine. C R Acad. Sci. Paris 303(1), 19–24 (1986)

    MathSciNet  Google Scholar 

  31. M. Feidt, Finite time thermodynamics applied to optimization of heat pumps and refrigerating machine cycles. in 12th IMACS World Congress on Scientific Computation Paris, France (1988).

  32. I. Philippi, M. Feidt, Finite time thermodynamics applied to inverse cycle machine. XVIII Int. Congress on Refrigeration, Montreal, Canada (1991).

  33. M. Feidt, Sur une systematique des cycles imparfaits. Entropie 205(1), 53–61 (1997)

    Google Scholar 

  34. M. Feidt, M. Costea, Effect of machine entropy production on the optimal performance of a refrigerator. Entropy 22(9), 913 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  35. M. Feidt, M. Costea, A new approach to heat pump optimisation considering the coupling between the thermal reservoirs and the cycle. Int. J. Refrig. 132, 322–329 (2021)

    Article  Google Scholar 

  36. R. Paul, A. Khodja, A. Fischer, K.H. Hoffmann, Cooling cycle optimization for a Vuilleumier refrigerator. Entropy 23(12), 1562 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  37. A. Khodja, R. Paul, A. Fischer, K.H. Hoffmann, Optimized cooling power of a Vuilleumier refrigerator with limited regeneration. Energies 14(24), 8376 (2021)

    Article  Google Scholar 

  38. S.A. Klein, D.T. Reindl, The relationship of optimum heat exchanger allocation and minimum entropy generation rate for refrigeration cycles. Trans. ASME J. Energy Res. Tech. 120(2), 172–178 (1998)

    Article  Google Scholar 

  39. C. Stanciu, M. Feidt, M. Costea, D. Stanciu, Optimization and entropy production: application to Carnot-like refrigeration machines. Entropy 20(12), 953 (2018)

    Article  ADS  Google Scholar 

  40. L.B. Erbay, H. Yavuz, The maximum cooling density of a realistic Stirling refrigerator. J. Phys. D Appl. Phys. 31(3), 291–293 (1998)

    Article  ADS  Google Scholar 

  41. S.B. Zhou, L.G. Chen, F.R. Sun, C. Wu, Cooling-load density optimization for a regenerated air refrigerator. Appl. Energy 78(3), 315–328 (2004)

    Article  ADS  Google Scholar 

  42. Y.F. Su, C.K. Chen, Exergy destruction minimization of an irreversible Carnot refrigeration cycle. Proc. IMechE Part A Power Energy 221(1), 11–20 (2007)

    Article  Google Scholar 

  43. Y.F. Su, C.K. Chen, Exergetic efficiency optimization of a refrigeration system with multi-irreversibilities. Proc. IMechE Part C J. Mech. Eng. Sci. 220(8), 1179–1188 (2006)

    Article  Google Scholar 

  44. C.K. Chen, Y.F. Su, Exergetic efficiency optimization for an irreversible Brayton refrigeration cycle. Int. J. Thermal Sci. 44(3), 303–310 (2005)

    Article  MathSciNet  Google Scholar 

  45. B. Sahin, A. Kodal, Finite time thermoeconomic optimization for endoreversible refrigerators and heat pumps. Energy Convers. Manag. 40(9), 951–960 (1999)

    Article  Google Scholar 

  46. A. Kodal, B. Sahin, T. Yilmaz, Effects of internal irreversibility and thermal leakage on the finite time thermoeconomic performance of refrigerators and heat pumps. Energy Convers. Manag. 41(6), 607–619 (2000)

    Article  Google Scholar 

  47. L.G. Chen, C. Wu, F.R. Sun, Effect of heat transfer law on finite time exergoeconomic performance of a Carnot refrigerator. Exergy An Int. J. 1(4), 295–302 (2001)

    Article  Google Scholar 

  48. F. Angulo-Brown, An ecological optimization criterion for finite-time heat engines. J. Appl. Phys. 69(11), 7465–7469 (1991)

    Article  ADS  Google Scholar 

  49. L.G. Chen, X.Q. Zhu, F.R. Sun, C. Wu, Ecological optimization for generalized irreversible Carnot refrigerators. J. Phys. D Appl. Phys 38(1), 113–118 (2005)

    Article  ADS  Google Scholar 

  50. Y.M. Tu, L.G. Chen, F.R. Sun, C. Wu, Exergy-based ecological optimization for an endoreversible Brayton refrigeration cycle. Int. J. Exergy 3(2), 191–201 (2006)

    Article  Google Scholar 

  51. S. Çakmak, D. Türkpençe, F. Altintas, Special coupled quantum Otto and Carnot cycles. Eur. Phys. J. Plus. 132(12), 554 (2017)

    Article  Google Scholar 

  52. S. Çakmak, F. Altintas, Different constructions and optimization of the irreversible quantum Carnot cycle. Eur. Phys. J. Plus. 136(4), 369 (2021)

    Article  Google Scholar 

  53. E. Açıkkalp, N. Caner, Application of exergetic sustainable index to the quantum irreversible Diesel refrigerator cycles for 1D box system. Eur. Phys. J. Plus. 130, 73 (2015)

    Article  Google Scholar 

  54. T. Fu, J.Y. Du, S.H. Su, G.Z. Su, J.C. Chen, Quantum thermodynamic pump driven by Maxwell’s demon. Eur. Phys. J. Plus. 136(10), 1059 (2021)

    Article  Google Scholar 

  55. Y. Wang, C.H. Zeng, B.Q. Ai, Anomalous transport and diffusion of coupled Brownian particles with periodic driving forces. Eur. Phys. J. Plus. 136(10), 1071 (2021)

    Article  Google Scholar 

  56. C.Z. Qi, Z.M. Ding, L.G. Chen, Y.L. Ge, H.J. Feng, Modelling of irreversible two-stage combined thermal Brownian refrigerators and their optimal performance. J. Non-Equilibr. Thermodyn. 46(2), 175–189 (2021)

    Article  ADS  Google Scholar 

  57. C.Z. Qi, L.G. Chen, Y.L. Ge, H.J. Feng, Heat transfer effect on the performance of thermal Brownian refrigerator. Eur. Phys. J. Plus. 137(3), 349 (2022)

    Article  Google Scholar 

  58. S.S. Qiu, Z.M. Ding, L.G. Chen, F.K. Meng, F.R. Sun, Optimal performance regions of energy selective electron cooling devices consisting of three reservoirs. Eur. Phys. J. Plus. 134(6), 273 (2019)

    Article  Google Scholar 

  59. Z.M. Ding, S.S. Qiu, L.G. Chen, W.H. Wang, Modeling and performance optimization of double-resonance electronic cooling device with three electron reservoirs. J. Non-Equilibr. Thermodyn. 46(3), 273–289 (2021)

    Article  ADS  Google Scholar 

  60. L.G. Chen, F.K. Meng, Z.M. Ding, S.J. Xia, H.J. Feng, Thermodynamic modeling and analysis of an air-cooled small space thermoelectric cooler. Eur. Phys. J. Plus. 135(1), 80 (2020)

    Article  Google Scholar 

  61. L.G. Chen, F.K. Meng, Y.L. Ge, H.J. Feng, Performance optimization for a multielement thermoelectric refrigerator with linear phenomenological heat transfer law. J. Non-Equilibr. Thermodyn. 46(2), 149–162 (2021)

    Article  ADS  Google Scholar 

  62. S.S. Qiu, Z.M. Ding, L.G. Chen, Y.L. Ge, Performance optimization of thermionic refrigerators based on van der Waals heterostructures. Sci. China Technol. Sci. 64(5), 1007–1016 (2021)

    Article  ADS  Google Scholar 

  63. L.G. Chen, W.L. Zhang, F.R. Sun, Power, efficiency, entropy generation rate and ecological optimization for a class of generalized irreversible universal heat engine cycles. Appl. Energy 84(5), 512–525 (2007)

    Article  Google Scholar 

  64. L.G. Chen, Y.L. Ge, C. Liu, H.J. Feng, G. Lorenzini, Performance of universal reciprocating heat-engine cycle with variable specific heats ratio of working fluid. Entropy 22(4), 397 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  65. X.X. Kan, L.G. Chen, F.R. Sun, F. Wu, Exergoeconomic performance optimization for a steady-flow endoreversible refrigerator cycle model including five typical cycles. Int. J. Low-Carbon Technol. 5(2), 74–80 (2010)

    Article  Google Scholar 

  66. X.X. Kan, L.G. Chen, F.R. Sun, F. Wu, C. Wu, Optimal performance for a steady-flow endoreversible refrigerator model including five typical cycles. Int. J. Ambient Energy 32(1), 18–24 (2011)

    Article  Google Scholar 

  67. L.G. Chen, X.X. Kan, F.R. Sun, F. Wu, Exergoeconomic performance optimization for a steady-flow endoreversible refrigerator model including six typical cycles. Int. J. Energy Environ. 4(1), 93–102 (2013)

    Google Scholar 

  68. J.S. Chiou, C.J. Liu, C.K. Chen, The performance of an irreversible Carnot refrigeration cycle. J. Phys. D Appl. Phys. 28(7), 1314–1318 (1995)

    Article  ADS  Google Scholar 

  69. L.G. Chen, F.R. Sun, C. Wu, R.L. Kiang, A generalized model of a real refrigerator and its performance. Appl. Thermal Eng. 17(4), 401–412 (1997)

    Article  Google Scholar 

  70. L.G. Chen, F.R. Sun, C. Wu, Effect of heat transfer law on the performance of a generalized irreversible Carnot refrigerator. J. Non-Equibri. Thermodyn. 26(3), 291–304 (2001)

    ADS  MATH  Google Scholar 

  71. L. Zhang, L.G. Chen, S.J. Xia, Y.L. Ge, C. Wang, H.J. Feng, Multi-objective optimization for helium-heated reverse water gas shift reactor by using NSGA-II. Int. J. Heat Mass Transfer 148, 119025 (2020)

    Article  Google Scholar 

  72. Z.X. Wu, H.J. Feng, L.G. Chen, Y.L. Ge, Performance optimization of a condenser in ocean thermal energy conversion (OTEC) system based on constructal theory and multi-objective genetic algorithm. Entropy 22(6), 641 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  73. M. Sun, S.J. Xia, L.G. Chen, C. Wang, C.Q. Tang, Minimum entropy generation rate and maximum yield optimization of sulfuric acid decomposition process using NSGA-II. Entropy 22(10), 1065 (2020)

    Article  ADS  Google Scholar 

  74. H.J. Feng, Z.J. Xie, L.G. Chen, Z.X. Wu, S.J. Xia, Constructal design for supercharged boiler superheater. Energy 191, 116484 (2020)

    Article  Google Scholar 

  75. H.J. Feng, W. Tang, L.G. Chen, J.C. Shi, Z.X. Wu, Multi-objective constructal optimization for marine condensers. Energies 14(17), 5545 (2021)

    Article  Google Scholar 

  76. C. Chen, J. You, H.J. Feng, L.G. Chen, A multi-objective study on the constructal design of non-uniform heat generating disc cooled by radial- and dendritic-pattern cooling channels. Sci. China Technol. Sci. 64(4), 729–744 (2021)

    Article  ADS  Google Scholar 

  77. Z.M. Zhang, H.J. Feng, L.G. Chen, Y.L. Ge, Multi-objective constructal design for compound heat dissipation channels in a three-dimensional trapezoidal heat generation body. Int. Comm. Heat Mass Transf. 127, 105584 (2021)

    Article  Google Scholar 

  78. W. Tang, H.J. Feng, L.G. Chen, Z.J. Xie, J.C. Shi, Constructal design for a boiler economizer. Energy 223, 120013 (2021)

    Article  Google Scholar 

  79. P.L. Li, L.G. Chen, S.J. Xia, R. Kong, Y.L. Ge, Multi-objective optimal configurations of a membrane reactor for steam methane reforming. Energy Rep. 8, 527–538 (2022)

    Article  Google Scholar 

  80. H.J. Feng, L.G. Chen, Z.J. Xie, W. Tang, Y.L. Ge, Multi-objective constructal design for a marine boiler considering entropy generation rate and power consumption. Energy Rep. 8, 1519–1527 (2022)

    Article  Google Scholar 

  81. H.J. Feng, Z.M. Zhang, L.G. Chen, Y.L. Ge, J.Y. Yu, Constructal design for tree-shaped compound heat dissipation channel in a disc heat generation body. Int. Commun. Heat Mass Transf. 132, 105929 (2022)

    Article  Google Scholar 

  82. K. Sun, H.J. Feng, L.G. Chen, Y.L. Ge, Constructal design of a cooling channel with semi-circular sidewall ribs in a rectangular heat generation body. Int. Comm. Heat Mass Transf. (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.019

    Article  Google Scholar 

  83. L.G. Chen, P.L. Li, S.J. Xia, R. Kong, Y. Ge, Multi-objective optimization of membrane reactor for steam methane reforming heated by molten salt. Sci. China Technol. Sci. (2022). https://doi.org/10.1007/s11431-021-2003-0

    Article  Google Scholar 

  84. S.S. Shi, Y.L. Ge, L.G. Chen, F.J. Feng, Four objective optimization of irreversible Atkinson cycle based on NSGA-II. Entropy 22(10), 1150 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  85. L.G. Chen, C.Q. Tang, H.J. Feng, Y.L. Ge, Power, efficiency, power density and ecological function optimizations for an irreversible modified closed variable-temperature reservoir regenerative Brayton cycle with one isothermal heating process. Energies 13(19), 5133 (2020)

    Article  Google Scholar 

  86. C.Q. Tang, H.J. Feng, L.G. Chen, W.H. Wang, Power density analysis and multi- objective optimization for a modified endoreversible simple closed Brayton cycle with one isothermal heat process. Energy Rep. 6, 1648–1657 (2020)

    Article  Google Scholar 

  87. Z.X. Wu, H.J. Feng, L.G. Chen, W. Tang, J.Z. Shi, Y.L. Ge, Constructal thermodynamic optimization for ocean thermal energy conversion system with dual-pressure organic Rankine cycle. Energy Convers. Manag. 210, 112727 (2020)

    Article  Google Scholar 

  88. Q.R. Gong, Y.L. Ge, L.G. Chen, S.S. Shi, H.J. Feng, Performance analyses and four-objective optimizations of an irreversible rectangular cycle. Entropy 23(9), 1203 (2021)

    Article  ADS  Google Scholar 

  89. S.S. Shi, Y.L. Ge, L.G. Chen, F.J. Feng, Performance optimizations with single-, bi-, tri- and quadru-objective for irreversible Atkinson cycle with nonlinear variation of working fluid’s specific heat. Energies 14(14), 4175 (2021)

    Article  Google Scholar 

  90. Y.L. Ge, S.S. Shi, L.D. Chen, D.F. Zhang, H.J. Feng, Power density analysis and multi-objective optimization for an irreversible Dual cycle. J. Non-Equilib. Thermodyn. 47, 1648–1657 (2022)

    Google Scholar 

Download references

Acknowledgements

This paper is supported by The National Natural Science Foundation of China (Project Nos. 52171317 and 51779262). The authors wish to thank the reviewers for their careful, unbiased and constructive suggestions, which led to this revised manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Lorenzini, G. Five performance indicators for a universal generalized irreversible steady flow cycle including seven specific refrigeration cycles. Eur. Phys. J. Plus 137, 504 (2022). https://doi.org/10.1140/epjp/s13360-022-02704-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02704-9

Navigation