Skip to main content
Log in

Surfactant-assisted synthesis of Ni2P nanostructures: effect of surfactant concentration on photocatalytic activity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Nickel phosphide nanostructures exhibit superior photocatalytic performance for dye removal and hydrogen evolution reaction. In this study, the preparation of Ni2P nanocatalysts with a simple and convenient hydrothermal method was studied. The effect of Hexamethylenetetramine (HMT) surfactant on the physical properties of the prepared samples was investigated through various characterization techniques, including XRD, FESEM, FTIR, BET, and DRS analysis. The results showed that the presence and concentration of HMT played a significant role in the variation of morphology and surface area of the samples. So that the shape of Ni2P nanostructures was adjusted, without using a template, by different amounts of HMT. In addition, XRD analysis coupled with Rietveld refinement, and FTIR spectroscopy confirmed the phase transition by adding a high amount of HMT surfactant. Due to higher specific surface area, Ni2P nanostructures synthesized in the presence of surfactant, showed higher photocatalytic activity for MB dye removal under UV lamp irradiation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Ray, S. Sultana, L. Paramanik, K. Parida, Recent advances in phase, size, and morphology-oriented nanostructured nickel phosphide for overall water splitting, Recent advances in phase, size, and morphology-oriented nanostructured nickel phosphide for overall water splitting (2020).

  2. S. Liu, X. Han, H. Zhang, H. Liu, Synthesis, characterization, and photocatalytic properties of Ni 12 P 5 hollow microspheres. J. Nanopart. Res. 19, 1–9 (2017)

    Article  Google Scholar 

  3. F. Zhang, X. Wang, H. Liu, C. Liu, Y. Wan, Y. Long, Z. Cai, Recent advances and applications of semiconductor photocatalytic technology. Appl. Sci. 9, 2489 (2019)

    Article  Google Scholar 

  4. S.G. Poulopoulos, A. Yerkinova, G. Ulykbanova, V.J. Inglezakis, Photocatalytic treatment of organic pollutants in a synthetic wastewater using UV light and combinations of TiO2, H2O2 and Fe (III). PLoS ONE 14, e0216745 (2019)

    Article  Google Scholar 

  5. T.G. Ambaye, K. Hagos, Photocatalytic and biological oxidation treatment of real textile wastewater. Nanotechnol. Environ. Eng. 5, 1–11 (2020)

    Article  Google Scholar 

  6. M. Rafique, M. Hamza, M. Shakil, M. Irshad, M.B. Tahir, M.R. Kabli, Highly efficient and visible light–driven nickel–doped vanadium oxide photocatalyst for degradation of Rhodamine B Dye. Appl. Nanosci. 10, 2365–2374 (2020)

    Article  ADS  Google Scholar 

  7. S.I. Sinar Mashuri, M.L. Ibrahim, M.F. Kasim, M.S. Mastuli, U. Rashid, A.H. Abdullah, A. Islam, N. Asikin Mijan, Y.H. Tan, N. Mansir, Photocatalysis for organic wastewater treatment: From the basis to current challenges for society. Catalysts 10, 1260 (2020)

    Article  Google Scholar 

  8. M. Iqbal, A. Ali, N.A. Nahyoon, A. Majeed, R. Pothu, S. Phulpoto, K.H. Thebo, Photocatalytic degradation of organic pollutant with nanosized cadmium sulfide. Mater. Sci. Energy Technol. 2, 41–45 (2019)

    Google Scholar 

  9. V. Vaiano, O. Sacco, D. Barba, V. Palma, Zinc sulfide prepared through zno sulfuration: characterization and photocatalytic activity, chemical. Eng. Trans. 74, 1159–1164 (2019)

    Google Scholar 

  10. F. Wang, Y.-M. Liu, C.-Y. Zhang, Facile synthesis of porous carbon/Ni 12 P 5 composites for electrocatalytic hydrogen evolution. New J. Chem. 43, 4160–4167 (2019)

    Article  Google Scholar 

  11. Y. Pei, Y. Cheng, J. Chen, W. Smith, P. Dong, P.M. Ajayan, M. Ye, J. Shen, Recent developments of transition metal phosphides as catalysts in the energy conversion field. J. Mater. Chem. A 6, 23220–23243 (2018)

    Article  Google Scholar 

  12. M.C. Alvarez-Galvan, J.M. Campos-Martin, J.L. Fierro, Transition metal phosphides for the catalytic hydrodeoxygenation of waste oils into green diesel. Catalysts 9, 293 (2019)

    Article  Google Scholar 

  13. H. Wu, Y. Ni, M. Wang, D. Lu, Shape-controlled synthesis and performance comparison of Ni 2 P nanostructures. CrystEngComm 18, 5155–5163 (2016)

    Article  Google Scholar 

  14. T. Geng, H. Wang, H. Wu, S. Zhang, Phase-control synthesis and catalytic property of nickel phosphide nanospheres. J. Nanopart. Res. 22, 1–12 (2020)

    Article  Google Scholar 

  15. X. Wang, Y.V. Kolen’ko, X.Q. Bao, K. Kovnir, L. Liu, One-step synthesis of self-supported nickel phosphide nanosheet array cathodes for efficient electrocatalytic hydrogen generation. Angew. Chem. 127, 8306–8310 (2015)

    Article  ADS  Google Scholar 

  16. L. Song, S. Zhang, A versatile route to synthesizing bulk and supported nickel phosphides by thermal treatment of a mechanical mixing of nickel chloride and sodium hypophosphite. Powder Technol. 208, 713–716 (2011)

    Article  Google Scholar 

  17. L. Song, S. Zhang, Q. Wei, A new route for synthesizing nickel phosphide catalysts with high hydrodesulfurization activity based on sodium dihydrogenphosphite. Catal. Commun. 12, 1157–1160 (2011)

    Article  Google Scholar 

  18. C. Zhang, B. Xin, Z. Xi, B. Zhang, Z. Li, H. Zhang, Z. Li, J. Hao, Phosphonium-based ionic liquid: a new phosphorus source toward microwave-driven synthesis of nickel phosphide for efficient hydrogen evolution reaction. ACS Sustain. Chem. Eng. 6, 1468–1477 (2018)

    Article  Google Scholar 

  19. H. Song, M. Dai, H. Song, X. Wan, X. Xu, C. Zhang, H. Wang, Synthesis of a Ni2P catalyst supported on anatase–TiO2 whiskers with high hydrodesulfurization activity, based on triphenylphosphine. Catal. Commun. 43, 151–154 (2014)

    Article  ADS  Google Scholar 

  20. J. Park, B. Koo, K.Y. Yoon, Y. Hwang, M. Kang, J.-G. Park, T. Hyeon, Generalized synthesis of metal phosphide nanorods via thermal decomposition of continuously delivered metal− phosphine complexes using a syringe pump. J. Am. Chem. Soc. 127, 8433–8440 (2005)

    Article  Google Scholar 

  21. E. Muthuswamy, G.H.L. Savithra, S.L. Brock, Synthetic levers enabling independent control of phase, size, and morphology in nickel phosphide nanoparticles. ACS Nano 5, 2402–2411 (2011)

    Article  Google Scholar 

  22. C. Lukehart, S.B. Milne, S. Stock, Formation of crystalline nanoclusters of Fe2P, RuP, Co2P, Rh2P, Ni2P, Pd5P2, or PtP2 in a silica xerogel matrix from single-source molecular precursors. Chem. Mater. 10, 903–908 (1998)

    Article  Google Scholar 

  23. A. Wang, M. Qin, J. Guan, L. Wang, H. Guo, X. Li, Y. Wang, R. Prins, Y. Hu, The synthesis of metal phosphides: reduction of oxide precursors in a hydrogen plasma. Angew. Chem. Int. Ed. 47, 6052–6054 (2008)

    Article  Google Scholar 

  24. H. Shi, J. Chen, Y. Yang, S. Tian, Catalytic deoxygenation of methyl laurate as a model compound to hydrocarbons on nickel phosphide catalysts: Remarkable support effect. Fuel Process. Technol. 118, 161–170 (2014)

    Article  Google Scholar 

  25. D. Zhang, X. Zhou, J. Liu, L. Dong, J. Zhao, Y. Xie, W. Sun, Selective synthesis of Ni12P5 and Ni2P nanoparticles: Electronic structures, magnetic and optical properties. Mater. Sci. Eng. B 273, 115389 (2021)

    Article  Google Scholar 

  26. H. Sun, W. Xue, J. Fan, E. Liu, Q. Yu, Preparation of Ni12P5-decorated Cd0.5Zn0.5S for efficient photocatalytic H2 evolution. J. Alloys Compd. 854, 156951 (2021)

    Article  Google Scholar 

  27. J. Wei, Y. Ni, N. Xiang, Y. Zhang, X.J.C. Ma, Urchin-like Ni x P y hollow superstructures: Mild solvothermal synthesis and enhanced catalytic performance for the reduction of 4-nitrophenol. CrystEngComm 16, 2113–2118 (2014)

    Article  Google Scholar 

  28. B. Wang, X. Huang, Z. Zhu, H. Huang, J.J.A.N. Dai, Hydrothermal synthesis method of nickel phosphide nanoparticles. Appl. Nanosci. 2, 423–427 (2012)

    Article  ADS  Google Scholar 

  29. K. Mi, Y. Ni, J.J.J.P. Hong, C. Solids, Solvent-controlled syntheses of Ni12P5 and Ni2P nanocrystals and photocatalytic property comparison. J. Phys. Chem. Solids 72, 1452–1456 (2011)

    Article  ADS  Google Scholar 

  30. S. Liu, H. Liu, J. Zhu, Z. Wang, A complexant-assisted hydrothermal route for the synthesis of nickel phosphide. J. Mater. Sci. 49, 7556–7562 (2014)

    Article  ADS  Google Scholar 

  31. J. Yan, H. Liu, F. He, Hydrothermal synthesis and photocatalytic degradation ability of nickel phosphide micro/nano materials, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2018, pp. 012119.

  32. P.W. Menezes, A. Indra, C. Das, C. Walter, C. Göbel, V. Gutkin, D. Schmeiβer, M.J.A.C. Driess, Uncovering the nature of active species of nickel phosphide catalysts in high-performance electrochemical overall water splitting. ACS Catal. 7, 103–109 (2017)

    Article  Google Scholar 

  33. X. Wang, F. Wan, Y. Gao, J. Liu, K. Jiang, Synthesis of high-quality Ni2P hollow sphere via a template-free surfactant-assisted solvothermal route. J. Cryst. Growth 310, 2569–2574 (2008)

    Article  ADS  Google Scholar 

  34. Q. Zhao, Y. Han, X. Huang, J. Dai, J. Tian, Z. Zhu, L. Yue, Hydrothermal synthesis of Ni 2 P nanoparticle and its hydrodesulfurization of dibenzothiophene. J. Nanopart. Res. 19, 1–10 (2017)

    Article  Google Scholar 

  35. A.R. Keshavarz, M. Soleimani, Effect of surfactant type on the synthesis of nanocrystalline MgAl 2 O 4 and its application as a support for Ni catalyst in the steam pre-reforming of natural gas. Micro Nano Lett. 11, 433–438 (2016)

    Article  Google Scholar 

  36. M.H. Khorasanizadeh, M. Ghiyasiyan-Arani, R. Monsef, M. Salavati-Niasari, H. Moayedi, Ultrasound-accelerated synthesis of uniform DyVO4 nanoparticles as high activity visible-light-driven photocatalyst. Ultrason. Sonochem. 59, 104719 (2019)

    Article  Google Scholar 

  37. Q. Liang, X. Liu, G. Zeng, Z. Liu, L. Tang, B. Shao, Z. Zeng, W. Zhang, Y. Liu, M. Cheng, Surfactant-assisted synthesis of photocatalysts: Mechanism, synthesis, recent advances and environmental application. Chem. Eng. J. 372, 429–451 (2019)

    Article  Google Scholar 

  38. X. Zhang, W. Gai, Effect of surfactant on the photocatalytic activity of Bi 2 WO 6 nanoparticles. J. Mater. Sci.: Mater. Electron. 28, 9777–9781 (2017)

    Google Scholar 

  39. J. Huang, G. Tan, W. Yang, L. Zhang, H. Ren, A. Xia, Microwave hydrothermal synthesis of BiFeO3: Impact of different surfactants on the morphology and photocatalytic properties. Mater. Sci. Semicond. Process. 25, 84–88 (2014)

    Article  Google Scholar 

  40. A. Sobhani, M. Salavati-Niasari, Simple synthesis and characterization of nickel phosphide nanostructures assisted by different inorganic precursors. J. Mater. Sci.: Mater. Electron. 27, 3619–3627 (2016)

    Google Scholar 

  41. Y. Lu, J.P. Tu, Q.Q. Xiong, J.Y. Xiang, Y.J. Mai, J. Zhang, Y.Q. Qiao, X.L. Wang, C.D. Gu, S.X. Mao, Controllable synthesis of a monophase nickel phosphide/carbon (Ni5P4/C) composite electrode via wet-chemistry and a solid-state reaction for the anode in lithium secondary batteries. Adv. Func. Mater. 22, 3927–3935 (2012)

    Article  Google Scholar 

  42. Y. Ni, L. Jin, J. Hong, Phase-controllable synthesis of nanosized nickel phosphides and comparison of photocatalytic degradation ability. Nanoscale 3, 196–200 (2011)

    Article  ADS  Google Scholar 

  43. J. Li, Y. Ni, K. Liao, J. Hong, Hydrothermal synthesis of Ni12P5 hollow microspheres, characterization and photocatalytic degradation property. J. Ccolloid Iinterface Sci. 332, 231–236 (2009)

    Article  ADS  Google Scholar 

  44. G.E. Ayom, M.D. Khan, T. Ingsel, W. Lin, R.K. Gupta, S.J. Zamisa, W.E. van Zyl, N. Revaprasadu, Flexible molecular precursors for selective decomposition to nickel sulfide or nickel phosphide for water splitting and supercapacitance. Chem. A Eur. J. 26, 2693–2704 (2020)

    Article  Google Scholar 

  45. S. Ye, X. Guan, HMT-controlled synthesis of mesoporous NiO hierarchical nanostructures and their catalytic role towards the thermal decomposition of ammonium perchlorate. Appl. Sci. 9, 2599 (2019)

    Article  Google Scholar 

  46. M.Y.A. Rahman, A. Umar, L. Roza, M. Salleh, Effect of hexamethylenetetramines (HMT) surfactant concentration on the performance of TiO 2 nanostructure photoelectrochemical cells. Russ. J. Electrochem. 50, 974–980 (2014)

    Article  Google Scholar 

  47. M. Rahman, A. Umar, L. Roza, M. Salleh, Effect of optical property of surfactant-treated TiO 2 nanostructure on the performance of TiO 2 photo-electrochemical cell. J. Solid State Electrochem. 16, 2005–2010 (2012)

    Article  Google Scholar 

  48. I. Irwan, M. Muzakkar, A. Umar, M. Maulidiyah, L. Salim, M. Nurdin, Effect of hexamethylenetetramine surfactant in morphology and optical properties of TiO2 nanoparticle for dye-sensitized solar cells, Journal of Physics: Conference Series, IOP Publishing, 2021, pp. 012045.

  49. K.-C. Hsu, J.-D. Liao, Y.-S. Fu, Hydrothermal synthesis of ZnO nanorods using the HMT Surfactant. Integr. Ferroelectr. 143, 97–106 (2013)

    Article  Google Scholar 

  50. M. Rahman, A. Umar, R. Taslim, M. Salleh, Effect of surfactant on the physical properties of ZnO nanorods and the performance of ZnO photoelectrochemical cell. J. Exp. Nanosci. 10, 599–609 (2015)

    Article  Google Scholar 

  51. Y.-F. Zhao, Y.-P. Sun, X. Yin, G.-C. Yin, X.-M. Wang, F.-C. Jia, B. Liu, Effect of surfactants on the microstructures of hierarchical SnO 2 blooming nanoflowers and their gas-sensing properties. Nanoscale Res. Lett. 13, 1–11 (2018)

    Article  ADS  Google Scholar 

  52. S. Ahmed, Y. Guo, R. Huang, D. Li, P. Tang, Y. Feng, Hexamethylene tetramine-assisted hydrothermal synthesis of porous magnesium oxide for high-efficiency removal of phosphate in aqueous solution. J. Environ. Chem. Eng. 5, 4649–4655 (2017)

    Article  Google Scholar 

  53. J. Li, L. Zhang, P. Yang, X. Cheng, Morphological evolution of Co phosphate and its electrochemical and photocatalytic performance. CrystEngComm 20, 6982–6988 (2018)

    Article  Google Scholar 

  54. Z. Yao, G. Wang, Y. Shi, Y. Zhao, J. Jiang, Y. Zhang, H. Wang, One-step synthesis of nickel and cobalt phosphide nanomaterials via decomposition of hexamethylenetetramine-containing precursors. Dalton Trans. 44, 14122–14129 (2015)

    Article  Google Scholar 

  55. E. Farahi, N. Memarian, Nanostructured nickel phosphide as an efficient photocatalyst: effect of phase on physical properties and dye degradation. Chem. Phys. Lett. 730, 478–484 (2019)

    Article  ADS  Google Scholar 

  56. M. Rath, L.P. Behera, B. Dash, A.R. Sheik, K. Sanjay, Recovery of dimethylglyoxime (DMG) from Ni-DMG complexes. Hydrometallurgy 176, 229–234 (2018)

    Article  Google Scholar 

  57. U. Holzwarth, N.J.N. Gibson, The Scherrer equation versus the’Debye-Scherrer equation. Nat. Nanotechnol. 6, 534–534 (2011)

    Article  ADS  Google Scholar 

  58. S. Sain, S. Patra, S. Pradhan, Quickest ever single-step mechanosynthesis of Cd0.5Zn0.5S quantum dots: nanostructure and optical characterizations. Mater. Res. Bull. 47, 1062–1072 (2012)

    Article  Google Scholar 

  59. H. Zhao, S. Sun, P. Jiang, Z.J. Xu, Graphitic C3N4 modified by Ni2P cocatalyst: An efficient, robust and low cost photocatalyst for visible-light-driven H2 evolution from water. Chem. Eng. J. 315, 296–303 (2017)

    Article  Google Scholar 

  60. Y. Zhang, G. Wang, Z. Jin, An orderly assembled g-C3N4, rGO and Ni2P photocatalyst for efficient hydrogen evolution. Int. J. Hydrogen Energy 44, 10316–10327 (2019)

    Article  Google Scholar 

  61. R. Boppella, W. Yang, J. Tan, H.-C. Kwon, J. Park, J. Moon, Black phosphorus supported Ni2P co-catalyst on graphitic carbon nitride enabling simultaneous boosting charge separation and surface reaction. Appl. Catal. B 242, 422–430 (2019)

    Article  Google Scholar 

  62. B. Sarkar, W. Kwek, D. Verma, J. Kim, Effective vacuum residue upgrading using sacrificial nickel (II) dimethylglyoxime complex in supercritical methanol. Appl. Catal. A 545, 148–158 (2017)

    Article  Google Scholar 

  63. H. Dogari, F. Hassanzadeh-Afruzi, A. Maleki, ZnFe2O4@ dimethylglyoxime: Preparation and Catalyst Application in the Synthesis of 2-Amino-tetrahydro-4H-chromene-3-carbonitrile Derivatives, Chemistry Proceedings, Multidisciplinary Digital Publishing Institute, 2020

  64. E. Yao, S. Xu, F. Zhao, T. Huang, H. Li, N. Zhao, J. Yi, Y. Yang, C. Wang, Study on thermal decomposition behavior, gaseous products, and kinetic analysis of bis-(dimethylglyoximato) nickel (II) complex using TG-DSC-FTIR-MS technique. Catalysts 10, 331 (2020)

    Article  Google Scholar 

  65. V. Muthukumar, J. Kiran, J. Reppert, R. Satyajit, V. Krishna, G.N. Rao, S.S.R. Krishnan, S.S.S. Sai, K. Venkataramaniah, A.J.N. Rao, Nonlinear optical transmission of surface-modified nickel sulfide nanoparticles: saturation of absorption and optical limiting. NANO 3, 161–167 (2008)

    Article  Google Scholar 

  66. P. Liang, F. Liang, Z. Yao, H. Gao, Y. Sun, B. Jiang, J. Tong, Novel synthesis of dispersed nickel phosphide nanospheres on carbon support via carbothermal reduction route, Phosphorus, Sulfur, Silicon the Related. Elements 192, 812–818 (2017)

    Google Scholar 

  67. K.S.J. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57, 603–619 (1985)

    Article  Google Scholar 

  68. M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic− inorganic nanocomposite materials. Chem. Mater. 13, 3169–3183 (2001)

    Article  Google Scholar 

  69. S. Liu, Y. Lin, J. Tong, Mixed surfactant controlled syntheses of solid Ni2P and yolk–shell Ni12P5 via a hydrothermal route and their photocatalytic properties. J. Alloys Compd 644, 140–146 (2015)

    Article  Google Scholar 

  70. A.R. Kucernak, V.N.N. Sundaram, Nickel phosphide: the effect of phosphorus content on hydrogen evolution activity and corrosion resistance in acidic medium. J. Mater. Chem. A 2, 17435–17445 (2014)

    Article  Google Scholar 

  71. S. Surendran, S. Shanmugapriya, S. Shanmugam, L. Vasylechko, R. Kalai-Selvan, Interweaved nickel phosphide sponge as an electrode for flexible supercapattery and water splitting applications. ACS Appl. Energy Mater. 1, 78–92 (2018)

    Article  Google Scholar 

  72. E. Aawani, N. Memarian, H.R. Dizaji, Synthesis and characterization of reduced graphene oxide–V2O5 nanocomposite for enhanced photocatalytic activity under different types of irradiation. J. Phys. Chem. Solids 125, 8–15 (2019)

    Article  ADS  Google Scholar 

  73. M.V. Narayana, S.N. Jammalamadaka, Tuning optical properties of graphene oxide under compressive strain using wet ball milling method. Graphene 5, 73 (2016)

    Article  Google Scholar 

  74. S. Jalali, M. Rahimi, K. Dashtian, M. Ghaedi, S. Mosleh, One step integration of plasmonic Ag2CrO4/Ag/AgCl into HKUST-1-MOF as novel visible-light driven photocatalyst for highly efficient degradation of mixture dyes pollutants: Its photocatalytic mechanism and modeling. Polyhedron 166, 217–225 (2019)

    Article  Google Scholar 

  75. S. Talukdar, R.K. Dutta, A mechanistic approach for superoxide radicals and singlet oxygen mediated enhanced photocatalytic dye degradation by selenium doped ZnS nanoparticles. RSC Adv. 6, 928–936 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nafiseh Memarian.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahi, E., Memarian, N. Surfactant-assisted synthesis of Ni2P nanostructures: effect of surfactant concentration on photocatalytic activity. Eur. Phys. J. Plus 137, 463 (2022). https://doi.org/10.1140/epjp/s13360-022-02663-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02663-1

Navigation