Skip to main content

Advertisement

Log in

Sensitivity-based nonlinear restoring force identification of multistable piezoelectric energy harvesters

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Nonlinear restoring force has a significant influence on the nonlinear dynamic behavior of multistable piezoelectric energy harvesters. However, it is sometimes difficult in experiments to obtain the nonlinear restoring force accurately. Therefore, identifying the nonlinear restoring force is essential to analyze and optimize the multistable piezoelectric energy harvesters. In this paper, a novel approach is proposed to identify the nonlinear restoring force from time-domain voltage response sensitivity analysis. Firstly, the nonlinear restoring force identification is formulated as a nonlinear optimization problem whose goal function is just least squares of the misfit between the measured and calculated output. Sensitivity analysis and the trust region constraint are then introduced to get convergent solution iteratively. Numerical simulations are carried out based on several examples, and the results demonstrate the feasibility and accuracy of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data will be made available on reasonable request.]

References

  1. J.Y. Park, M. Salauddin, M.S. Rasel, Nanogenerator for scavenging low frequency vibrations. J. Micromech. Microeng. 29(5), 053001 (2019)

    Article  ADS  Google Scholar 

  2. S.P. Beeby, M.J. Tudor, N.M. White, Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17(12), R175–R195 (2006)

    Article  Google Scholar 

  3. C.R. Bowen et al., Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 7(12), 3836–3856 (2014)

    Article  Google Scholar 

  4. D.T. Ngatcha, P. Woafo, Analysis of an electrostatic energy harvester with variable area, permittivity and radius. Eur. Phys. J. B 89, 10 (2016)

    Article  MathSciNet  Google Scholar 

  5. L. Mateu, F. Moll, Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts. J. Intell. Mater. Syst. Struct. 16(10), 835–845 (2005)

    Article  Google Scholar 

  6. W. Wang et al., Magnetic-spring based energy harvesting from human motions: design, modeling and experiments. Energy Convers. Manag. 132, 189–197 (2017)

    Article  Google Scholar 

  7. Z. Yang et al., High-performance piezoelectric energy harvesters and their applications. Joule 2(4), 642–697 (2018)

    Article  Google Scholar 

  8. M.F. Daqaq, Response of uni-modal duffing-type harvesters to random forced excitations. J. Sound Vib. 329(18), 3621–3631 (2010)

    Article  ADS  Google Scholar 

  9. R.L. Harne, K.W. Wang, A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22(2), 023001 (2013)

    Article  ADS  Google Scholar 

  10. G. Gafforelli et al., Experimental verification of a bridge-shaped, nonlinear vibration energy harvester. Appl. Phys. Lett. 105(20), 203901 (2014)

    Article  Google Scholar 

  11. S. Zhao, A. Erturk, On the stochastic excitation of monostable and bistable electroelastic power generators: relative advantages and tradeoffs in a physical system. Appl. Phys. Lett. 102(10), 103902 (2013)

    Article  ADS  Google Scholar 

  12. P. Kim, J. Seok, Dynamic and energetic characteristics of a tri-stable magnetopiezoelastic energy harvester. Mech. Mach. Theory 94, 41–63 (2015)

    Article  Google Scholar 

  13. S.C. Stanton, C.C. McGehee, B.P. Mann, Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett. 95(17), 174103 (2009)

    Article  ADS  Google Scholar 

  14. K. Fan et al., A monostable piezoelectric energy harvester for broadband low-level excitations. Appl. Phys. Lett. 112(12), 123901 (2018)

    Article  ADS  Google Scholar 

  15. F. Cottone, H. Vocca, L. Gammaitoni, Nonlinear energy harvesting. Phys. Rev. Lett. 102(8), 080601 (2009)

    Article  ADS  Google Scholar 

  16. A. Erturk, J. Hoffmann, D.J. Inman, A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94(25), 254102 (2009)

    Article  ADS  Google Scholar 

  17. S. Zhou et al., Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Appl. Phys. Lett. 102(17), 173901 (2013)

    Article  ADS  Google Scholar 

  18. R. Masana, M.F. Daqaq, Relative performance of a vibratory energy harvester in mono- and bi-stable potentials. J. Sound Vib. 330(24), 6036–6052 (2011)

    Article  ADS  Google Scholar 

  19. R. Masana, M.F. Daqaq, Electromechanical modeling and nonlinear analysis of axially loaded energy harvesters. J. Vib. Acoust. 133(1), 011007 (2011)

    Article  Google Scholar 

  20. W. Liu, F. Formosa, A. Badel, Optimization study of a piezoelectric bistable generator with doubled voltage frequency using harmonic balance method. J. Intell. Mater. Syst. Struct. 28(5), 671–686 (2016)

    Article  Google Scholar 

  21. A.F. Arrieta et al., Broadband vibration energy harvesting based on cantilevered piezoelectric bi-stable composites. Appl. Phys. Lett. 102(17), 173904 (2013)

    Article  ADS  Google Scholar 

  22. A.F. Arrieta et al., A piezoelectric bistable plate for nonlinear broadband energy harvesting. Appl. Phys. Lett. 97(10), 104102 (2010)

    Article  ADS  Google Scholar 

  23. S. Zhou et al., Broadband tristable energy harvester: modeling and experiment verification. Appl. Energy 133, 33–39 (2014)

    Article  Google Scholar 

  24. J.Y. Cao et al., Influence of potential well depth on nonlinear tristable energy harvesting. Appl. Phys. Lett. 106(17), 173903 (2015)

    Article  ADS  Google Scholar 

  25. Z.-Y. Zhou, W.-Y. Qin, P. Zhu, Energy harvesting in a quad-stable harvester subjected to random excitation. AIP Adv. 6(2), 025022 (2016)

    Article  ADS  Google Scholar 

  26. C. Wang, Q. Zhang, W. Wang, Low-frequency wideband vibration energy harvesting by using frequency up-conversion and quin-stable nonlinearity. J. Sound Vib. 399, 169–181 (2017)

    Article  ADS  Google Scholar 

  27. P. Kim, J. Seok, A multi-stable energy harvester: dynamic modeling and bifurcation analysis. J. Sound Vib. 333(21), 5525–5547 (2014)

    Article  ADS  Google Scholar 

  28. H. Li, W. Qin, C. Lan, W. Deng, Z. Zhou, Dynamics and coherence resonance of tri-stable energy harvesting system. Smart Mater. Struct. 25(1), 015001 (2016)

    Article  Google Scholar 

  29. G. Wang, W.-H. Liao, Z. Zhao, J. Tan, S. Cui, H. Wu, W. Wang, Nonlinear magnetic force and dynamic characteristics of a tri-stable piezoelectric energy harvester. Nonlinear Dyn. 97(4), 2371–2397 (2019)

    Article  Google Scholar 

  30. Y. Zhang, J. Cao, W. Wang, W.-H. Liao, Enhanced modeling of nonlinear restoring force in multi-stable energy harvesters. J. Sound Vib. 494, 115890 (2021)

    Article  Google Scholar 

  31. D. Upadrashta, Y. Yang, Finite element modeling of nonlinear piezoelectric energy harvesters with magnetic interaction. Smart Mater. Struct. 24(4), 045042 (2015)

    Article  ADS  Google Scholar 

  32. H. Abdelmoula, S. Zimmerman, A. Abdelkefi, Accurate modeling, comparative analysis, and performance enhancement of broadband piezoelectric energy harvesters with single and dual magnetic forces. Int. J. Non-Linear Mech. 95, 355–363 (2017)

    Article  ADS  Google Scholar 

  33. J. Cunha, S. Cogan, C. Berthod, Application of genetic algorithms for the identification of elastic constants of composite materials from dynamic tests. Int. J. Numer. Meth. Eng. 45(7), 891–900 (1999)

    Article  MATH  Google Scholar 

  34. G.R. Liu, S.C. Chen, Flaw detection in sandwich plates based on time-harmonic response using genetic algorithm. Comput. Methods Appl. Mech. Eng. 190(42), 5505–5514 (2001)

    Article  ADS  MATH  Google Scholar 

  35. L.G. Yuan, Q.G. Yang, Parameter identification and synchronization of fractional-order chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 17(1), 305–316 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. W. Hu, Y. Yu, W. Gu, Parameter estimation of fractional-order arbitrary dimensional hyperchaotic systems via a hybrid adaptive artificial bee colony algorithm with simulated annealing algorithm. Eng. Appl. Artif. Intell. 68, 172–191 (2018)

    Article  Google Scholar 

  37. C. Wang, T. Tang, Several gradient-based iterative estimation algorithms for a class of nonlinear systems using the filtering technique. Nonlinear Dyn. 77(3), 769–780 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. J.E. Mottershead, M. Link, M.I. Friswell, The sensitivity method in finite element model updating: a tutorial. Mech. Syst. Signal Process. 25, 2275–2296 (2011)

    Article  ADS  Google Scholar 

  39. Z.R. Lu, L. Wang, An enhanced response sensitivity approach for structural damage identification: convergence and performance. Int. J. Numer. Meth. Eng. 111, 1231–1251 (2017)

    Article  MathSciNet  Google Scholar 

  40. L. Wang, J. Liu, Z.R. Lu, Incremental response sensitivity approach for parameter identification of chaotic and hyperchaotic systems. Nonlinear Dyn. 89(1), 153–167 (2017)

    Article  MATH  Google Scholar 

  41. Z.R. Lu, R. Yao, L. Wang et al., Identification of nonlinear hysteretic parameters by enhanced response sensitivity approach. Int. J. Non-Linear Mech. 96, 1–11 (2017)

    Article  ADS  Google Scholar 

  42. Z.R. Lu, G. Liu, J. Liu et al., Parameter identification of nonlinear fractional-order systems by enhanced response sensitivity approach. Nonlinear Dyn. 95(2), 1495–1512 (2019)

    Article  MATH  Google Scholar 

  43. H.A. Sodano, G. Park, D.J. Inman, Estimation of electric charge output for piezoelectric energy harvesting. Strain 40(2), 49–58 (2004)

    Article  Google Scholar 

  44. Z.R. Lu, J. Zhou, L. Wang, On choice and effect of weight matrix for response sensitivity-based damage identification with measurement and model errors. Mech. Syst. Signal Process. 114, 1–24 (2019)

    Article  ADS  Google Scholar 

  45. M. Benning, M. Burger, Modern regularization methods for inverse problems. Acta Numer. 27, 1–111 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. P.C. Hansen, D.P. O’Leary, The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 14(6), 1487–1503 (1993)

Download references

Acknowledgements

The present investigation was performed under the support of National Natural Science Foundation of China (No. 51776190), China Postdoctoral Science Foundation (No. 2020M682336), and Science and Technology Project of Henan Province (No. 212102310248).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Wang, L., Wang, W. et al. Sensitivity-based nonlinear restoring force identification of multistable piezoelectric energy harvesters. Eur. Phys. J. Plus 137, 285 (2022). https://doi.org/10.1140/epjp/s13360-022-02507-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02507-y

Navigation