Skip to main content
Log in

Cd(OH)2 and CdO: structural, optical, electron density distribution analysis with antibacterial assay

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present work is a systematic study on Cd(OH)2 and CdO nanoparticle synthesized by hydrothermal route. The structural properties are confirmed with standard XRD results of Cd(OH)2 and CdO. Phase transformation: Cd(OH)2 (hexagonal) to CdO (face-centred) is a notable feature observed from the structural parameters. Further, Fourier transform infrared (FTIR), scanning electron microscope (SEM), UV–visible absorption and antibacterial studies were taken for Cd(OH)2 and CdO. The FTIR spectra of Cd(OH)2 show bands of 1404, 850 cm−1 which can be ascribed to the confirmation of Cd–O and 524 cm−1 assigned to Cd–O stretching in the spectra of CdO which correlates with the literature. The morphology of the both the samples shows the shape of nanocubes. Calcination of 400 °C is reflected in the reduced size of the particle in SEM. The optical bandgap of CdO (2.14 eV) is lower than Cd(OH)2 (3.14 eV). The antibacterial evaluation shows that the effect observed was more in CdO than in Cd(OH)2. It was evident that the preparation time of CdONps was economical owing to its simplicity.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. Z. Yang, W. Zhong, Y. Yin et al., Controllable synthesis of single-crystalline CdO and Cd(OH)2 nanowires by a simple hydrothermal approach. Nanoscale Res. Lett. 5, 961 (2010). https://doi.org/10.1007/s11671-010-9589-y

    Article  ADS  Google Scholar 

  2. P. Qu, S. Yan, H. Meng, Controllabe growth of cadmium hydroxide nanostructures by hydrothermal method. Solid State Sci. 12(1), 83–87 (2010). https://doi.org/10.1016/j.solidstatesciences.2009.10.008

    Article  ADS  Google Scholar 

  3. A. Taufik, H. Tju, S.P. Prakoso, R. Saleh, Different routes of synthesized CdO nanoparticles through microwave-assistedmethods and photocatalytic stud. AIP Conf. Proc. (2018). https://doi.org/10.1063/1.5064032

    Article  Google Scholar 

  4. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Multifunctional properties of CdO nanostructures synthesised through microwave assisted hydrothermal method. Mater. Res. Innov. (2018). https://doi.org/10.1080/14328917.2018.1475443

    Article  Google Scholar 

  5. N. Shanmugam, B. Saravanan, R. Reagan, N. Kannadasan, K. Sathishkumar et al., Effect of thermal annealing on the Cd(OH)2 and preparation of Cdo nanocrystals. Mod. Chem. Appl. 2, 124 (2014). https://doi.org/10.4172/2329-6798.1000124

    Article  Google Scholar 

  6. A. Tadjarodi, M. Imani, H. Kerdari, K. Bijanzad, D. Khaledi, M. Rad, Preparation of CdO rhombus-like nanostructure and its photocatalytic degradation of azo dyes from aqueous solution. Nanomater. Nanotechnol. 4, 16 (2014)

    Article  Google Scholar 

  7. Z. Guo, M. Li, J. Liu, Highly porous CdO nanowires: preparation based on hydroxy- and carbonate-containing cadmium compound precursor nanowires, gas sensing and optical properties. Nanotechnology. 19, 245611 (2008)

    Article  ADS  Google Scholar 

  8. M. Ye, W. Zheng et al., Ultralong cadmium hydroxide nanowires: synthesis characterization transformation into CdO nanostrands. Langmuir 23, 9064–9068 (2007)

    Article  Google Scholar 

  9. W. Xia, Y. Liu, J. Li, C. Chen, Investigation of CdO hexagonal nanoflakes synthesized by a hydrothermal method for liquefied petroleum gas detection. Anal. Methods 8(33), 6265–6269 (2016). https://doi.org/10.1039/c6ay01914e

    Article  Google Scholar 

  10. L.A. Saghatforoush, S. Sanati, R. Mehdizadeh, Hasanzadeh, Solvothermal synthesis of Cd(OH)2 and CdO nanocrystals and application as a new electrochemical sensor for simultaneous determination of norfloxacin and lomefloxacin. Superlattices Microstruct. 52, 885–893 (2012)

    Article  ADS  Google Scholar 

  11. S. Balamurugan, A.R. Balu, K. Usharani, M. Suganya, S. Anitha, D. Prabha, S. Ilangovan, Synthesis of CdO nanopowders by a simple soft chemical method and evaluation of their antimicrobial activities. Pac. Sci. Rev. A Nat. Sci. Eng. 18(3), 228–232 (2016). https://doi.org/10.1016/j.psra.2016.10.003

    Article  Google Scholar 

  12. H.M. Rietveld, The Rietveld method. Phys. Scr. 89, 098002–098008 (2014). https://doi.org/10.1002/jps.23909

    Article  ADS  Google Scholar 

  13. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969). https://doi.org/10.1107/S0021889869006558

    Article  Google Scholar 

  14. D. Sivaganesh, S. Saravanakumar, V. Sivakumar, M. Rajajeyagathan Ramanathan, J. Arunpadian, T.K. NandhaGopal, Thirumalaisamy Surfactant-assisted synthesis of ZnWO4 nanostructures: a view on photocatalystis, photoluminescence and electron density distribution analysis. Mater. Character. 159, 110035–110050 (2020)

    Article  Google Scholar 

  15. V. Petrícek, M. Dušek, L. Palatinus, Crystallographic computing system JANA2006: general features. Zeitschr. Krist. 229, 345–52 (2014). https://doi.org/10.1515/zkri-2014-1737

    Article  Google Scholar 

  16. D. Sivaganesh, S. Saravanakumar, V. Sivakumar, S. Sasikumar, J. Nandha Gopal, R. Ramanathan, ZnWO4:Eu3+ phosphor with intense blue LED excitation: photoluminescence and electron density distribution analysis. Luminescence 36(1), 99–109 (2020). https://doi.org/10.1002/bio.3920

    Article  Google Scholar 

  17. S. Israel, R. Saravanan, N. Srinivasan, S.K. Mohanlal, An investigation on the bonding in MgO, CaO, SrO and BaO from the MEM electron density distributions. J. Phys. Chem. Solids 64, 879–886 (2003). http://ir.mkuniversity.ac.in/id/eprint/2335

    Article  ADS  Google Scholar 

  18. D. Sivaganesh, S. Saravanakumar, V. Sivakumar, S. Sasikumar, J. Nandha Gopal, S. Kalpana, R. Ramanathan, Sm3+ induced SrWO4 phosphor: analysis of photoluminescence and photocatalytic properties with electron density distribution studies. J. Mater. Sci. Mater. Electron. 31(11), 8865–8883 (2020). https://doi.org/10.1007/s10854-020-03421-8

    Article  Google Scholar 

  19. K. Momma, T. Ikeda, A.A. Belik, F. Izumi, Dysnomia, a computer program for maximum-entropy method (MEM) analysis and its performance in the MEM-based pattern fitting. Powder Diffract. 28(3), 184–193 (2013)

    Article  ADS  Google Scholar 

  20. D. Sivaganesh, S. Saravanakumar, V. Sivakumar, R. Sangeetha, L. John Berchmans, K.S. Syed Ali, A.M. Alshehri, Effect of preparation techniques on BaWO4: Structural, morphological, optical and electron density distribution analysis. J. Mater. Sci. Mater. Electron. 32(2), 1466–1475 (2021). https://doi.org/10.1007/s10854-020-04917-z

    Article  Google Scholar 

  21. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44(6), 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970

    Article  Google Scholar 

  22. D. Sivaganesh, S. Saravanakumar, V. Sivakumar, K.S. Syed Ali, E. Akapo, Ezra Alemayehu, R. Ramanathan, R. Saravanan, Structural, optical and charge density analysis of Al doped ZnO Materials. J. Mater. Sci. Mater. Electron. 30, 2966–2974 (2019). https://doi.org/10.1007/s10854-018-00574-5

    Article  Google Scholar 

  23. M. Ristic, S. Popovic, S. Music, Formation and properties of Cd(OH)2 and CdO particles. Mater. Lett. 58, 2494–2499 (2004)

    Article  Google Scholar 

  24. B. Weckler, H.D. Lutz, Near-infrared spectra of M(OH)Cl (M = Ca, Cd, Sr), Zn(OH)F, g-Cd(OH)2, Sr(OH)2, and brucite-type hydroxides M(OH)2 (M = Mg, Ca, Mn, Fe Co, Ni, Cd). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 52, 1507–1513 (1996)

    Article  ADS  Google Scholar 

  25. M. Schmidt, H.D. Lutz, g-Cd(OH)2, A common hydroxide or an aquoxy-hydroxide. Mater. Res. Bull. 26, 605–612 (1991). https://doi.org/10.1016/0025-5408(91)90103-S

    Article  Google Scholar 

  26. D.J. Jeejamol, CdO nanoparticles: facile synthesis and influence of particle size on photocatalytic degradation of methylene blue. IOSR J. Appl. Phys. 9(5), 66–73 (2017)

    Google Scholar 

  27. Karthik, K., Dhanuskodi, S., Gopinath, C., Sivaramakrishnan, S. Antibacterial activities of CdO microplates synthesized by hydrothermal method. Int. J. Innov. Res. Sci. Eng. 558–561 (2014)

  28. K. Karthik, S. Dhanuskodi, S. Prabukumar et al., Dielectric and antibacterial studies of microwave assisted calcium hydroxide nanoparticles. J. Mater. Sci. Mater. Electron. 28, 16509–16518 (2017). https://doi.org/10.1007/s10854-017-7563-5

    Article  Google Scholar 

  29. K. Karthik, S. Dhanuskodi, C.S. Prabukumar et al., Nanostructured CdO–NiO composite for multifunctional applications. J. Phys. Chem. Solids 112, 106–118 (2018). https://doi.org/10.1016/j.jpcs.2017.09.016

    Article  ADS  Google Scholar 

  30. K. Karthik, S. Dhanuskodi, S. Prabukumar et al., Multifunctional properties of microwave assisted CdO–NiO–ZnO mixed metal oxide nanocomposite: enhanced photocatalytic and antibacterial activities. J. Mater. Sci. Mater. Electron. 29, 5459–5471 (2018). https://doi.org/10.1007/s10854-017-8513-y

    Article  Google Scholar 

  31. Mohamed Ali A., Anwar H. A., Ahmed N. A. Investigation and characterization of simple chemical method Synthesized CdO–NiO Nancomposite. IOP Conf. Series: Journal of Physics: Conf. Series (2019) 012051.

  32. Saadoon M. A., Ali Hassoun H., Majid H. H., Ahmed N. A., Ehab M. A., Green syntheses of CdO NPs and evaluation of their antimicrobial activities. J. Phys. Conf. Ser. 1963 (2021) 012134. https://doi.org/10.1088/1742-6596/1963/1/012134

Download references

Acknowledgements

The authors are grateful to the International Research Centre (IRC), Kalasalingam Academy of Research and Education for XRD, SEM, FTIR and UV facility provision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nithiyanantham.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasikumar, P., Revathy, M.S. & Nithiyanantham, S. Cd(OH)2 and CdO: structural, optical, electron density distribution analysis with antibacterial assay. Eur. Phys. J. Plus 137, 294 (2022). https://doi.org/10.1140/epjp/s13360-022-02492-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02492-2

Navigation