Skip to main content
Log in

Structural, optical and luminescence properties of pure, Fe-doped and glucose-capped CdO Semiconductor nanoparticles for their Antibacterial activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Single-phase pure, Fe-doped and glucose-capped CdO nanoparticles (NPs) were prepared by a chemical precipitation method. The structure, morphology, composition, optical and luminescence properties of all samples were investigated using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, photoluminescence (PL), and ultraviolet–visible (UV–Vis) spectroscopy. XRD study revealed the single-phase hexagonal crystal structure of all samples with P63/mmc space group. SEM detected the microstructural behaviour of all samples. The functional groups of the synthesized samples were also identified by FTIR spectroscopy. The calculated direct band energy values were estimated as 3.78 eV for pure, 3.65 eV for Fe-doped, and 3.63 eV for glucose-capped CdO NPs. From PL study, it was identified that glucose-capped CdO NPs showed the strongest photoluminescence signal (543 nm) comparing to the Fe-doped (436 nm) and pure (308 nm) CdO NPs. As compared to all samples, glucose-capped CdO NPs exhibited significant antibacterial activity against E. coli bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.K. Gupta, K. Ghosh, R. Patel, S.R. Mishra, P.K. Kahol, Highly conducting and transparent tin-doped CdO thin films for optoelectronic applications. Mater. Lett. 62(25), 4103–4108 (2008). https://doi.org/10.1016/j.matlet.2008.06.008

    Article  CAS  Google Scholar 

  2. M. Norouzi, M. Kolahdouz, P. Ebrahimi, M. Ganjian, R. Soleimanzadeh, K. Narimani, H. Radamson, Thermoelectric energy harvesting using array of vertically aligned Al-doped ZnO nanorods. Thin Solid Films 619, 41–47 (2016). https://doi.org/10.1016/j.tsf.2016.10.041

    Article  CAS  Google Scholar 

  3. A.T. Ravichandran, A. Robert Xavier, K. Pushpanathan, B.M. Nagabhushana, R. Chandramohan, Structural and optical properties of Zn doped CdO nanoparticles synthesized by chemical precipitation method. J. Mater. Sci. Mater. Electron. 27, 2693–2700 (2016). https://doi.org/10.1007/s10854-015-4079-8

    Article  CAS  Google Scholar 

  4. R. Kondo, H. Okimura, Y. Sakai, Electrical properties of semiconductor photodiodes with semitransparent films. Jpn. J. Appl. Phys. 10(11), 1547–1554 (1971). https://doi.org/10.1143/JJAP.10.1547

    Article  CAS  Google Scholar 

  5. F.A. Benko, F.P. Koffyberg, Quantum efficiency and optical transitions of CdO photoanodes. Solid State Commun. 57(12), 901–903 (1986). https://doi.org/10.1016/0038-1098(86)90920-8

    Article  CAS  Google Scholar 

  6. A. Ratkovich, R.L. Penn, Zinc oxide nanoparticle growth from homogenous solution: influence of Zn:OH, water concentration, and surfactant additives. Mater. Res. Bull. 44(5), 993–998 (2009). https://doi.org/10.1016/j.materresbull.2008.11.012

    Article  CAS  Google Scholar 

  7. Y.L. Wu, A.I.Y. Tok, X.T. Zeng, C.S. Lim, L.C. Kwek, F.C.Y. Boey, A dual-colored bio-marker made of doped ZnO nanocrystals. Nanotechnology 19(34), 345605 (2008). https://doi.org/10.1088/0957-4484/19/34/345605

    Article  CAS  Google Scholar 

  8. P. Raveendran, J. Fu, S.L. Wallen, Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 125(46), 13940–13941 (2003). https://doi.org/10.1021/ja029267j

    Article  CAS  Google Scholar 

  9. K.M. Reddy, K. Feris, J. Bell, D.G. Wingett, C. Hanley, A. Punnoose, Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 90(213902), 2139021–2139023 (2007). https://doi.org/10.1063/1.2742324

    Article  CAS  Google Scholar 

  10. Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi, Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 77(7), 2325–2331 (2011). https://doi.org/10.1128/AEM.02149-10

    Article  CAS  Google Scholar 

  11. A. Lipovsky, Y. Nitzan, A. Gedanken, R. Lubart, Antifungal activity of ZnO nanoparticles—the role of ROS mediated cell injury. Nanotechnology 22(10), 105101 (2011). https://doi.org/10.1088/0957-4484/22/10/105101

    Article  CAS  Google Scholar 

  12. X.R. Ye, C. Daraio, C. Wang, J.B. Talbot, Room temperature solvent-free synthesis of monodisperse magnetite nanocrystals. J. Nanosci. Nanotechnol. 6(3), 852–856 (2006). https://doi.org/10.1166/jnn.2006.135

    Article  CAS  Google Scholar 

  13. Z. Guo-hua, L. Ming-fang, L. Ming-Li, Differential pulse voltammetric determination of dopamine with the coexistence of ascorbic acid on boron-doped diamond surface. Cent. Eur. J. Chem. 5(4), 1114–1123 (2007). https://doi.org/10.2478/s11532-007-0049-1

    Article  CAS  Google Scholar 

  14. K.M. Abd El-Salaam, E.A. Hassan, Active surface centres in a heterogeneous CdO catalyst for ethanol decomposition. Surf. Technol. 16(2), 121–128 (1982). https://doi.org/10.1016/0376-4583(82)90031-0

    Article  CAS  Google Scholar 

  15. S. Sivakumar, A. Venkatesan, P. Soundhirarajan, C.P. Khatiwada, Thermal, structural, functional, optical and magnetic studies of pure and Ba doped CdO nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 151, 760–772 (2015). https://doi.org/10.1016/j.saa.2015.06.105

    Article  CAS  Google Scholar 

  16. C.J. Johnson, Q.H. Yan, D.P. Yang, J.R. Saykally, Optical cavity effects in ZnO nanowire lasers and waveguides. J Phys. Chem. B 107(34), 8816–8828 (2003). https://doi.org/10.1021/jp034482n

    Article  CAS  Google Scholar 

  17. A. Moorthy, A.R. Subramaniam, T.G. Manivasagam, D. Kumaresan, Surfactant-assisted synthesis of metallic cadmium, cadmium hydroxide nanostructures and their electrochemical charge storage properties. Dalton Trans. 47(26), 8683–8689 (2018). https://doi.org/10.1039/C8DT00638E

    Article  CAS  Google Scholar 

  18. W.S. Khan, C. Cao, I. Aslam, Z. Ali, F.K. Butt, T. Mahmood, G. Nabi, A. Ihsan, Z. Usman, A. Rehman, Single crystalline multi-petal Cd nanoleaves prepared by thermal reduction of CdO. Mater. Res. Bull. 48(2), 819–822 (2013). https://doi.org/10.1016/j.materresbull.2012.11.068

    Article  CAS  Google Scholar 

  19. W.Z. Tawfik, M. Esmat, S.I. El-Dek, Drastic improvement in magnetization of CdO nanoparticles by Fe doping. Appl. Nanosci. 7, 863–870 (2017). https://doi.org/10.1007/s13204-017-0623-6

    Article  CAS  Google Scholar 

  20. S. Balamurugan, A.R. Balu, K. Usharani, M. Suganya, S. Anitha, D. Prabha, S. langovan, Synthesis of CdO nanopowders by a simple soft chemical method and evaluation of their antimicrobial activities. Pac. Sci. Rev. A Nat. Sci. Eng. 18(3), 228–232 (2016). https://doi.org/10.1016/j.psra.2016.10.003

    Article  Google Scholar 

  21. I.G. Morozov, O.V. Belousova, M.V. Kuznetcov, Room-temperature ferromagnetism in nanostructured submicron Cd/CdO particles. J. Mater. Sci. Mater. Electron. 31, 6664–6670 (2020). https://doi.org/10.1007/s10854-020-03222-z

    Article  CAS  Google Scholar 

  22. P.S. Kumar, M. Selvakumar, P. Bhagabati, B. Bharathi, S. Karuthapandian, S. Balakumar, CdO/ZnO nanohybrids: facile synthesis and morphologically enhanced photocatalytic performance. RSC Adv. 4(62), 32977–32986 (2014). https://doi.org/10.1039/C4RA02502D

    Article  CAS  Google Scholar 

  23. C.P. Khatiwada, Synthesis, characterizations and anti-bacterial activities of pure and Ag doped CdO nanoparticles by chemical precipitation method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 136, 1751–1759 (2015). https://doi.org/10.1016/j.saa.2014.10.078

    Article  CAS  Google Scholar 

  24. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Photocatalytic and antibacterial activities of hydrothermally prepared CdO nanoparticles. J. Mater. Sci. Mater. Electron. 28, 11420–11429 (2017). https://doi.org/10.1007/s10854-017-6937-z

    Article  CAS  Google Scholar 

  25. S. Gandhi, R.H.H. Subramani, T. Ramankrishnan, A. Sivabalan, V. Dhanalakshmi, M.R.G. Gopinath Nair, R. Anbarasan, Ultrasound assisted one pot synthesis of nano-sized CuO and its nanocomposite with poly(vinyl alcohol). J. Mater. Sci. 45, 1688–1694 (2010). https://doi.org/10.1007/s10853-009-4158-4

    Article  CAS  Google Scholar 

  26. Z. Guo, M. Li, J. Liu, Highly porous CdO nanowires: preparation based on hydroxy-and carbonate-containing cadmium compound precursor nanowires, gas sensing and optical properties. Nanotechnology 19(24), 245611 (2008). https://doi.org/10.1088/0957-4484/19/24/245611

    Article  CAS  Google Scholar 

  27. R. Ranjithkumar, A.A. Irudayaraj, G. Jayakumar, A.D. Raj, S. Karthick, R. Vinayagamoorthy, Synthesis and properties of CdO and Fe doped CdO nanoparticles. Mater. Today Proc. 3(6), 1378–1382 (2016). https://doi.org/10.1016/j.matpr.2016.04.018

    Article  Google Scholar 

  28. N.M. Al-Hada, H. Mohamed Kamari, C.A.C. Abdullah, E. Saion, A.H. Shaari, Z.A. Talib, K.A. Matori, Down-top nanofabrication of binary (CdO)x (ZnO)1-x nanoparticles and their antibacterial activity. Int. J. Nanomed. 12, 8309–8323 (2017). https://doi.org/10.2147/IJN.S150405

    Article  CAS  Google Scholar 

  29. R. Saravanan, H. Shankar, T. Prakash, V. Narayanan, A. Stephen, ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light. Mater. Chem. Phys. 125(1–2), 277–280 (2011). https://doi.org/10.1016/j.matchemphys.2010.09.030

    Article  CAS  Google Scholar 

  30. R. Kumari, P. Singh, V. Kumar, Study on structural, optical and electrical properties of CdO and Cd0.98Al0.02O films prepared by innovative sol–gel screen-printing method. J. Mater. Sci. Mater. Electron. 29, 8989–8994 (2018). https://doi.org/10.1007/s10854-018-8923-5

    Article  CAS  Google Scholar 

  31. P. Velusamy, R.R. Babu, K. Ramamurthi, M.S. Dahlem, E. Elangovan, Highly transparent conducting cerium incorporated CdO thin films deposited by a spray pyrolytic technique. RSC Adv. 5(124), 102741–102749 (2015). https://doi.org/10.1039/C5RA15262C

    Article  CAS  Google Scholar 

  32. N. Bel Haj Mohamed, M. Haouari, Z. Zaaboub, M. Nafoutti, F. Hassen, H. Maaref, H. Ben Ouada, Time resolved and temperature dependence of the radiative properties of thiol-capped CdS nanoparticles films. J. Nanopart. Res. 16, 2242 (2014). https://doi.org/10.1007/s11051-013-2242-9

  33. R. Tripathi, A. Dutta, S. Das, A. Kumar, T.P. Sinha, Dielectric relaxation of CdO nanoparticles. Appl. Nanosci. 6, 175–181 (2016). https://doi.org/10.1007/s13204-015-0427-5

    Article  CAS  Google Scholar 

  34. K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, Quantum confinement and photoluminescence of well-aligned CdO nanofibers by a solvothermal route. Mater. Lett. 120, 243–245 (2014). https://doi.org/10.1016/j.matlet.2014.01.048

    Article  CAS  Google Scholar 

  35. R. Wahab, Y.S. Kim, A. Mishra, S.-I.I. Yun, H.S. Shin, Formation of ZnO micro-flowers prepared via solution process and their antibacterial activity. Nanoscale Res. Lett. 5(10), 1675 (2010). https://doi.org/10.1007/s11671-010-9694-y

    Article  CAS  Google Scholar 

  36. R.B. Zhao, D.L. Hou, J.M. Guo, C.M. Zhen, G.D. Tang, Room temperature ferromagnetism in Ni doped ZnO powders. J. Superconduct. Nov. Magn. 23(7), 1261–2165 (2010). https://doi.org/10.1007/s10948-010-1043-y

    Article  CAS  Google Scholar 

  37. P.J. Rivero, A. Urrutia, J. Goicoechea, C.R. Zamarreno, F.J. Arregui, I.R. Matias, An antibacterial coating based on a polymer/sol–gel hybrid matrix loaded with silver nanoparticles. Nanoscale Res. Lett. 6, 305 (2011). https://doi.org/10.1186/1556-276X-6-305

    Article  CAS  Google Scholar 

  38. C. Dong, D. Song, J. Cairney, O.L. Maddan, G. He, Y. Deng, Antibacterial study of Mg(OH)2 nanoplatelets. Materials Research Bulletin. 46(4), 576–582 (2011). https://doi.org/10.1016/j.materresbull.2010.12.023

    Article  CAS  Google Scholar 

  39. B.K. Holt, J.A. Bard, Interaction of silver (I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44(39), 13214–13223 (2005). https://doi.org/10.1021/bi0508542

    Article  CAS  Google Scholar 

  40. M.A. Fayaz, K. Balaji, M. Girilal, R. Yadav, T.P. Kalaichelvan, R. Venketesan, Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against Gram-positive and Gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 6(1), 103–109 (2010). https://doi.org/10.1016/j.nano.2009.04.006

    Article  CAS  Google Scholar 

  41. M. Nasrullah, F.Z. Gul, S. Hanif, A. Mannan, S. Naz, J.S. Ali, M. Zia, Green and chemical syntheses of CdO NPs: a comparative study for yield attributes, biological characteristics, and toxicity concerns. ACS Omega 5(11), 5739–5747 (2020). https://doi.org/10.1021/acsomega.9b03769

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murali N..

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gudla, U.R., Suryanarayana, B., Raghavendra, V. et al. Structural, optical and luminescence properties of pure, Fe-doped and glucose-capped CdO Semiconductor nanoparticles for their Antibacterial activity. J Mater Sci: Mater Electron 32, 3920–3928 (2021). https://doi.org/10.1007/s10854-020-05135-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05135-3

Navigation