Skip to main content
Log in

Analytic derivation of the nonlinear gluon distribution function

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the present article, two analytical solutions based on the Laplace transforms method for the linear and nonlinear gluon distribution functions have been presented at low values of x. These linear and nonlinear methods are presented based on the solutions of the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution equation and the Gribov–Levin–Ryskin–Mueller–Qiu (GLR-MQ) equation at the leading-order accuracy in perturbative QCD, respectively. The gluon distributions are obtained directly in terms of the parameterization of structure function \(F_{2}(x,Q^{2})\) and its derivative and compared with the results from the parameterization models. The \(n_{f}\) changes at the threshold are considered in the numerical results. The effects of the nonlinear corrections are visible as \(Q^{2}\) decreases and vanish as \(Q^{2}\) increases. The nonlinear corrections tame the behavior of the gluon distribution function at low x and \(Q^{2}\) in comparison with the parameterization models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The standard parameterization of the gluon distribution function at low x is introduced by

    $$\begin{aligned} G(x,Q^{2})=f(Q^{2})x^{-\delta } \end{aligned}$$

    where the low x behavior could well be more singular. By considering the variable change \(\nu {\equiv }\ln (1/x)\), one can rewrite the gluon distribution in s-space as

    $$\begin{aligned} {\mathcal {L}}[\widehat{G}^{2}(\nu ,Q^{2});s]{=}\frac{f(Q^{2})^{2}}{(s-2\delta )},\\ {\mathcal {L}}[\widehat{G}(\nu ,Q^{2});s]^{2}{=}\frac{f(Q^{2})^{2}}{(s-\delta )^{2}}. \end{aligned}$$

    We observe that the function \({\mathcal {L}}[\widehat{G}^{2}(\nu ,Q^{2});s]\) is always lower than \({\mathcal {L}}[\widehat{G}(\nu ,Q^{2});s]^{2}\) for low s values in a wide range of \(Q^{2}\) values. According to this result, we use from this limited approach for solving the quadratic equation in s-space.

  2. In Ref. [23], the gluon distribution for \(n_{f}=4\) is just \(\frac{3}{5}G_{n_{f}=3}(x,Q^{2})\), where \(G_{n_{f}=3}(x,Q^{2})\) is obtained from a fit to ZEUS data [25, 26] into an expression in both \(\ln (Q^{2})\) and \(\ln (1/x)\) to include the effects of heavy-quark masses. In Ref. [24], authors obtained an analytical solution for \(G(x,Q^{2})\) using a Froissart bounded structure function for \(0<x{\lesssim }0.09\). Those obtained a simple quadratic polynomial in \(\ln (1/x)\) with quadratic polynomial coefficients in \(\ln (Q^{2})\).

  3. In Ref. [23], authors obtained the gluon distribution \(G(x,Q^{2})\) for 5 active quarks (for massless u, d, s and massive c, b quarks) into the massless gluon distribution \(G_{n_{f}=3}(x,Q^{2})\), as \(G_{n_{f}=5}(x,Q^{2})=\frac{6}{11}G_{n_{f}=3}(x,Q^{2})\). Also, authors obtained an excellent fit to the gluon distribution for \(n_{f}=5\) using a quadratic expression in \(\ln {1/x}\) and a much more complicated power series in \(\ln (Q^{2})\) for \(x{\lesssim }0.05\).

References

  1. L.N. Lipatov, Sov. J. Nucl. Phys. 20, 94 (1975)

    Google Scholar 

  2. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)

    Google Scholar 

  3. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  4. Yu.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)

    ADS  Google Scholar 

  5. H. Khanpour, A. Mirjalili, S. Atashbar Tehrani, Phys. Rev. C 95, 035201 (2017)

    Article  ADS  Google Scholar 

  6. H. Khanpour, M. Goharipour, V. Guzey, Eur. Phys. J. C 78, 7 (2018)

    Article  ADS  Google Scholar 

  7. S. Mohammad Moosavi Nejad, H. Khanpour, S. Atashbar Tehrani, M. Mahdavi, Phys. Rev. C 94, 045201 (2016)

    Article  ADS  Google Scholar 

  8. G.R. Boroun, S. Zarrin, F. Teimoury, Eur. Phys. J. Plus 130, 214 (2015)

    Article  Google Scholar 

  9. F. Teimoury Azadbakht, G.R. Boroun, Int. J. Theor. Phys. 57, 495 (2018)

    Article  Google Scholar 

  10. S. Zarrin, G.R. Boroun, Nucl. Phys. B 922, 126 (2017)

    Article  ADS  Google Scholar 

  11. F. Teimoury Azadbakht, G.R. Boroun, B. Rezaei, Int. J. Mod. Phys. E 27, 1850071 (2018)

    Article  ADS  Google Scholar 

  12. M. Mottaghizadeh, F. Taghavi Shahri, P. Eslami, Phys. Lett. B 773, 375 (2017)

    Article  ADS  Google Scholar 

  13. M. Mottaghizadeh, P. Eslami, F. Taghavi-Shahri, Int. J. Mod. Phys. A 32, 1750065 (2017)

    Article  ADS  Google Scholar 

  14. S. Dadfar, S. Zarrin, Eur. Phys. J. C 80, 319 (2020)

    Article  ADS  Google Scholar 

  15. H. Hosseinkhani, M. Modarres, N. Olanj, Int. J. Mod. Phys. A 32, 1750121 (2017)

    Article  ADS  Google Scholar 

  16. M.M. Block, L. Durand, D.W. McKay, Phys. Rev. D 79, 014031 (2009)

    Article  ADS  Google Scholar 

  17. LHeC Collaboration and FCC-he Study Group , P.Agostini et al., CERN-ACC-Note-2020-0002, J.Phys.G: Nucl.Part.Phys. 48, 110501(2021)

  18. L.V. Gribov, E.M. Levin, M.G. Ryskin, Phys. Rept. 100, 1 (1983)

    Article  ADS  Google Scholar 

  19. A.H. Mueller, J.W. Qiu, Nucl. Phys. B 268, 427 (1986)

    Article  ADS  Google Scholar 

  20. A.V. Kotikov and V.N. Velizhanin, arXiv:math/0501274 [hep-ph] (2005)

  21. F.D. Aaron et al., H1 and ZEUS collaborations. JHEP 1001, 109 (2010)

    Article  ADS  Google Scholar 

  22. M.M. Block, L. Durand, P. Ha, Phys. Rev. D 89, 094027 (2014)

    Article  ADS  Google Scholar 

  23. M.M. Block and L. Durand, arXiv:0902.0372 [hep-ph] (2009)

  24. M.M. Block, L. Durand, D.W. McKay, Phys. Rev. D 77, 094003 (2008)

    Article  ADS  Google Scholar 

  25. J. Breitweg et al., ZEUS. Phys. Lett. B 487, 53 (2000)

    Article  ADS  Google Scholar 

  26. S. Chekanov et al., ZEUS. Eur. Phys. J. C 21, 443 (2001)

    Article  ADS  Google Scholar 

  27. K.J. Eskola, H. Honkanen, V.J. Kolhinen, J.-W. Qiu, C.A. Salgado, Nucl. Phys. B 660, 211 (2003)

    Article  ADS  Google Scholar 

  28. A. Dainese et al., HERA-LHC Workshop, DESY, (2005)

  29. J. Pumplin et al., JHEP 07, 012 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank the respectable referee for giving the main idea of this work. I sincerely thank the EPJC referee for his/her invaluable comments during the review process my manuscript by Ref. NO. Eur. Phys. J. C 81 (2021) 9, 851. The feedback from the referee was very important for me.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Boroun.

Appendix A

Appendix A

The explicit expression for the proton structure function suggested in Ref. [22] is defined by the following form

$$\begin{aligned} F^{\gamma p}_{ 2}(x,Q^{2})= & {} D(Q^{2})(1- x)^{n}[C(Q^{2})+A(Q^{2})\ln (\frac{1}{x}\frac{Q^{2}}{Q^{2}+\mu ^{2}})\nonumber \\&+B(Q^{2})\ln ^{2}(\frac{1}{x}\frac{Q^{2}}{Q^{2}+\mu ^{2}})], \end{aligned}$$
(20)

where

$$\begin{aligned} A(Q^{2})= & {} a_{0} + a_{1} {\ln }(1+\frac{Q^{2}}{\mu ^{2}}) + a_{2}{\ln }^{2}(1+\frac{Q^{2}}{\mu ^{2}}) ,\nonumber \\ B(Q^{2})= & {} b_{0} + b_{1} {\ln }(1+\frac{Q^{2}}{\mu ^{2}}) + b_{2}{\ln }^{2}(1+\frac{Q^{2}}{\mu ^{2}}) ,\nonumber \\ C(Q^{2})= & {} c_{0} + c_{1} {\ln }(1+\frac{Q^{2}}{\mu ^{2}}),\nonumber \\ D(Q^{2})= & {} \frac{Q^{2}(Q^{2}+\lambda M^{2})}{(Q^{2}+M^{2})^2}. \end{aligned}$$
(21)

Here, M is the effective mass and \(\mu ^{2}\) is a scale factor. The additional parameters with their statistical errors are given in Table I.

Table 1 The effective parameters at low x for \(0.15~\mathrm {GeV}^{2}<Q^{2}<3000~\mathrm {GeV}^{2}\) provided by the following values

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boroun, G.R. Analytic derivation of the nonlinear gluon distribution function. Eur. Phys. J. Plus 137, 259 (2022). https://doi.org/10.1140/epjp/s13360-022-02486-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02486-0

Navigation