Skip to main content
Log in

Vibration behavior analysis of novelty corrugated-core sandwich plate structure by using first-order shear deformation plate and shell theories

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A unified dynamic model is established for investigating the vibration behaviors of novelty corrugated-core sandwich plate structure (NCSPS) under various boundary conditions based on the first-order shear deformation plate and shell theories by selecting differential quadrature finite element method (DQFEM) in this article. The NCSPS is composed of two different elements including plate element and circular arc shell element and the coupling between the above elements is realized by coordinate transformation and common differential quadrature nodes. The penalty function method is selected to simulate the boundary conditions of NCSPS and five boundary conditions including free, simply supported (I), clamped (I), simply supported (II) and clamped (II) are taken into account in this paper. The convergence of the established model is investigated from the perspectives of differential quadrature nodes and penalty factors. The validations including accuracy, stability and universality of the established model are studied by comparing the results calculated by the established model with the corresponding results of ABAQUS. The free and forced vibration characteristics with regard to NCSPS subject to various boundary conditions are investigated detailly in terms of structure parameters. The investigations of free vibration behaviors of NCSPS under free and clamped (I) boundary conditions are realized by investigating the effect of structure parameters of NCSPS on its the natural frequency. For forced vibration analysis, only steady-state response is considered and the investigations of forced vibration behaviors of NCSPS under clamped (I) and (II) boundary conditions are performed by analyzing the influence of structure parameters of NCSPS on its displacement response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability Statements

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. Y. Chen, L. Zhang, C. He, R. He, B. Xu, Y. Li, Thermal insulation performance and heat transfer mechanism of C/SiC corrugated lattice core sandwich panel. Aerosp. Sci. Technol. (2021). https://doi.org/10.1016/j.ast.2021.106539

    Article  Google Scholar 

  2. S. Sun, Y. Sheng, S. Feng, T. Jian Lu, Heat transfer efficiency of hierarchical corrugated sandwich panels. Compos. Struct. 272, 114195 (2021). https://doi.org/10.1016/j.compstruct.2021.114195

    Article  Google Scholar 

  3. L.L. Yan, B. Yu, B. Han, C.Q. Chen, Q.C. Zhang, T.J. Lu, Compressive strength and energy absorption of sandwich panels with aluminum foam-filled corrugated cores. Compos. Sci. Technol. 86, 142–148 (2013). https://doi.org/10.1016/j.compscitech.2013.07.011

    Article  Google Scholar 

  4. T. Lu, L. Valdevit, A. Evans, Active cooling by metallic sandwich structures with periodic cores. Prog. Mater Sci. 50(7), 789–815 (2005). https://doi.org/10.1016/j.pmatsci.2005.03.001

    Article  Google Scholar 

  5. W. Jiang et al., Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb. Sci. Rep. 8(1), 4817 (2018). https://doi.org/10.1038/s41598-018-23286-6

    Article  ADS  Google Scholar 

  6. I. Dayyani, A.D. Shaw, E.I. Saavedra Flores, M.I. Friswell, The mechanics of composite corrugated structures: A review with applications in morphing aircraft. Compos. Struct. 133, 358–380 (2015). https://doi.org/10.1016/j.compstruct.2015.07.099

    Article  Google Scholar 

  7. J. Torabi, J. Niiranen, Microarchitecture-dependent nonlinear bending analysis for cellular plates with prismatic corrugated cores via an anisotropic strain gradient plate theory of first-order shear deformation. Eng. Struct. 236, 112117 (2021). https://doi.org/10.1016/j.engstruct.2021.112117

    Article  Google Scholar 

  8. R. Zhao, K. Yu, G.M. Hulbert, Y. Wu, X. Li, Piecewise shear deformation theory and finite element formulation for vibration analysis of laminated composite and sandwich plates in thermal environments. Compos. Struct. 160, 1060–1083 (2017). https://doi.org/10.1016/j.compstruct.2016.10.103

    Article  Google Scholar 

  9. L.-X. Peng, S.-T. Yan, G.-K. Mo, X. Zhang, Free vibration analysis of corrugated-core sandwich plates using a meshfree Galerkin method based on the first-order shear deformation theory. Int. J. Mech. Sci. 78, 8–18 (2014). https://doi.org/10.1016/j.ijmecsci.2013.10.009

    Article  Google Scholar 

  10. F.-H. Li, B. Han, Q.-C. Zhang, F. Jin, T.J. Lu, Buckling of a standing corrugated sandwich plate subjected to body force and terminal load. Thin-Walled Struct. 127, 688–699 (2018). https://doi.org/10.1016/j.tws.2018.03.013

    Article  Google Scholar 

  11. B. Han, K.-K. Qin, Q.-C. Zhang, Q. Zhang, T.J. Lu, B.-H. Lu, Free vibration and buckling of foam-filled composite corrugated sandwich plates under thermal loading. Compos. Struct. 172, 173–189 (2017). https://doi.org/10.1016/j.compstruct.2017.03.051

    Article  Google Scholar 

  12. B. Han, K.-K. Qin, B. Yu, Q.-C. Zhang, C.-Q. Chen, T.J. Lu, Design optimization of foam-reinforced corrugated sandwich beams. Compos. Struct. 130, 51–62 (2015). https://doi.org/10.1016/j.compstruct.2015.04.022

    Article  Google Scholar 

  13. S. Yan, J. Jelovica, Buckling and free vibration of laser-welded web-core sandwich panels: Extreme sensitivity to variation of weld rotational stiffness. Eng. Struct. 244, 112737 (2021). https://doi.org/10.1016/j.engstruct.2021.112737

    Article  Google Scholar 

  14. J. Mei, Y. Ao, W. Jiang, J. Liu, Z. Zhou, W. Huang, Investigation on the shear behaviors of carbon fiber composite sandwich panels with the X-core. Mar. Struct. 77, 102897 (2021). https://doi.org/10.1016/j.marstruc.2020.102897

    Article  Google Scholar 

  15. Z. Zhou, M. Chen, W. Jia, K. Xie, Free and forced vibration analyses of simply supported Z-reinforced sandwich structures with cavities through a theoretical approach. Compos. Struct. 243, 112182 (2020). https://doi.org/10.1016/j.compstruct.2020.112182

    Article  Google Scholar 

  16. N. Van Quyen, N. Van Thanh, T.Q. Quan, N.D. Duc, Nonlinear forced vibration of sandwich cylindrical panel with negative Poisson’s ratio auxetic honeycombs core and CNTRC face sheets. Thin-Walled Struct. 162, 107571 (2021). https://doi.org/10.1016/j.tws.2021.107571

    Article  Google Scholar 

  17. K. Magnucki, E. Magnucka-Blandzi, L. Wittenbeck, Elastic bending and buckling of a steel composite beam with corrugated main core and sandwich faces—Theoretical study. Appl. Math. Model. 40(2), 1276–1286 (2016). https://doi.org/10.1016/j.apm.2015.06.035

    Article  MathSciNet  MATH  Google Scholar 

  18. W.-Z. Zhuang, C. Yang, Z.-G. Wu, Aeroelastic analysis of foam-filled composite corrugated sandwich plates using a higher-order layerwise model. Compos. Struct. 257, 112996 (2021). https://doi.org/10.1016/j.compstruct.2020.112996

    Article  Google Scholar 

  19. X. Wang et al., Free vibration behavior of Ti-6Al-4V sandwich beams with corrugated channel cores: Experiments and simulations. Thin-Walled Struct. 135, 329–340 (2019). https://doi.org/10.1016/j.tws.2018.11.008

    Article  Google Scholar 

  20. Z.-J. Zhang, B. Han, Q.-C. Zhang, F. Jin, Free vibration analysis of sandwich beams with honeycomb-corrugation hybrid cores. Compos. Struct. 171, 335–344 (2017). https://doi.org/10.1016/j.compstruct.2017.03.045

    Article  Google Scholar 

  21. X. Wang et al., Optimal design of metallic corrugated sandwich panels with polyurea-metal laminate face sheets for simultaneous vibration attenuation and structural stiffness. Compos. Struct. 256, 112994 (2021). https://doi.org/10.1016/j.compstruct.2020.112994

    Article  Google Scholar 

  22. X. Wang et al., Enhanced vibration and damping characteristics of novel corrugated sandwich panels with polyurea-metal laminate face sheets. Compos. Struct. 251, 112591 (2020). https://doi.org/10.1016/j.compstruct.2020.112591

    Article  Google Scholar 

  23. Z.-J. Wu, F.-M. Li, Y.-Z. Wang, Vibration band gap behaviors of sandwich panels with corrugated cores. Comput. Struct. 129, 30–39 (2013). https://doi.org/10.1016/j.compstruc.2013.08.009

    Article  Google Scholar 

  24. H. Zamanifar, S. Sarrami-Foroushani, M. Azhari, Static and dynamic analysis of corrugated-core sandwich plates using finite strip method. Eng. Struct. 183, 30–51 (2019). https://doi.org/10.1016/j.engstruct.2018.12.102

    Article  Google Scholar 

  25. H. Zamanifar, S. Sarrami-Foroushani, M. Azhari, A parametric study on the mechanical and thermal stability of corrugated-core sandwich plates. Structures 24, 209–226 (2020). https://doi.org/10.1016/j.istruc.2020.01.015

    Article  Google Scholar 

  26. W. Zhuang, C. Yang, Z. Wu, Modal and aeroelastic analysis of trapezoidal corrugated-core sandwich panels in supersonic flow. Int. J. Mech. Sci. 157–158, 267–281 (2019). https://doi.org/10.1016/j.ijmecsci.2019.04.052

    Article  Google Scholar 

  27. J. Lou, J. Yang, S. Kitipornchai, H. Wu, A dynamic homogenization model for long-wavelength wave propagation in corrugated sandwich plates. Int. J. Mech. Sci. 149, 27–37 (2018). https://doi.org/10.1016/j.ijmecsci.2018.09.033

    Article  Google Scholar 

  28. E. Magnucka-Blandzi, Z. Walczak, P. Jasion, L. Wittenbeck, Buckling and vibrations of metal sandwich beams with trapezoidal corrugated cores—the lengthwise corrugated main core. Thin-Walled Struct. 112, 78–82 (2017). https://doi.org/10.1016/j.tws.2016.12.013

    Article  Google Scholar 

  29. X. Wang et al., Dynamic response of clamped sandwich beams with fluid-fillied corrugated cores. Int. J. Impact Eng. 139, 103533 (2020). https://doi.org/10.1016/j.ijimpeng.2020.103533

    Article  Google Scholar 

  30. M. Shaban, A. Alibeigloo, Three-dimensional elasticity solution for sandwich panels with corrugated cores by using energy method. Thin-Walled Struct. 119, 404–411 (2017). https://doi.org/10.1016/j.tws.2017.06.035

    Article  Google Scholar 

  31. Z. Shi, Y. Zhong, Q. Yi, X. Peng, High efficiency analysis model for composite honeycomb sandwich plate by using variational asymptotic method. Thin-Walled Struct. 163, 107709 (2021). https://doi.org/10.1016/j.tws.2021.107709

    Article  Google Scholar 

  32. S. Upreti, V.K. Singh, S.K. Kamal, A. Jain, A. Dixit, Modelling and analysis of honeycomb sandwich structure using finite element method. Mater. Today: Proc. 25, 620–625 (2020). https://doi.org/10.1016/j.matpr.2019.07.377

    Article  Google Scholar 

  33. T. Fu, Z. Chen, H. Yu, C. Li, Y. Zhao, Thermal buckling and sound radiation behavior of truss core sandwich panel resting on elastic foundation. Int. J. Mech. Sci. (2019). https://doi.org/10.1016/j.ijmecsci.2019.105055

    Article  Google Scholar 

  34. L. Meng, X. Lan, J. Zhao, Z. Wang, Equivalent models and mechanical properties of bio-inspired corrugated sandwich structures subjected to bending loads. Compos. Struct. 244, 112257 (2020). https://doi.org/10.1016/j.compstruct.2020.112257

    Article  Google Scholar 

  35. M. Li, S. Du, F. Li, X. Jing, Vibration characteristics of novel multilayer sandwich beams: Modelling, analysis and experimental validations. Mech. Syst. Signal Process. 142, 106799 (2020). https://doi.org/10.1016/j.ymssp.2020.106799

    Article  Google Scholar 

  36. J. Lou, L. Ma, L.-Z. Wu, Free vibration analysis of simply supported sandwich beams with lattice truss core. Mater. Sci. Eng. B 177(19), 1712–1716 (2012). https://doi.org/10.1016/j.mseb.2012.02.003

    Article  Google Scholar 

  37. Z. Zhao, S. Wen, F. Li, Vibration analysis of multi-span lattice sandwich beams using the assumed mode method. Compos. Struct. 185, 716–727 (2018). https://doi.org/10.1016/j.compstruct.2017.11.069

    Article  Google Scholar 

  38. Y.-J. Wang, Z.-J. Zhang, X.-M. Xue, L. Zhang, Free vibration analysis of composite sandwich panels with hierarchical honeycomb sandwich core. Thin-Walled Struct. 145, 106425 (2019). https://doi.org/10.1016/j.tws.2019.106425

    Article  Google Scholar 

  39. G. Bartolozzi, M. Pierini, U. Orrenius, N. Baldanzini, An equivalent material formulation for sinusoidal corrugated cores of structural sandwich panels. Compos. Struct. 100, 173–185 (2013). https://doi.org/10.1016/j.compstruct.2012.12.042

    Article  Google Scholar 

  40. S. Li, J.-S. Yang, L.-Z. Wu, G.-C. Yu, L.-J. Feng, Vibration behavior of metallic sandwich panels with Hourglass truss cores. Mar. Struct. 63, 84–98 (2019). https://doi.org/10.1016/j.marstruc.2018.09.004

    Article  Google Scholar 

  41. B. Zhang, H. Li, L. Kong, H. Shen, X. Zhang, Size-dependent static and dynamic analysis of Reddy-type micro-beams by strain gradient differential quadrature finite element method. Thin-Walled Struct. 148, 106496 (2020). https://doi.org/10.1016/j.tws.2019.106496

    Article  Google Scholar 

  42. Z. Su, G. Jin, T. Ye, Electro-mechanical vibration characteristics of functionally graded piezoelectric plates with general boundary conditions. Int. J. Mech. Sci. 138–139, 42–53 (2018). https://doi.org/10.1016/j.ijmecsci.2018.01.040

    Article  Google Scholar 

  43. Z. Su, G. Jin, S. Shi, T. Ye, X. Jia, A unified solution for vibration analysis of functionally graded cylindrical, conical shells and annular plates with general boundary conditions. Int. J. Mech. Sci. 80, 62–80 (2014). https://doi.org/10.1016/j.ijmecsci.2014.01.002

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 51705537), State Key Laboratory of High Performance Complex Manufacturing, Central South University, China (Grant No. ZZYJKT2021-07). The authors also gratefully acknowledge the supports from Key Laboratory of Vibration and Control of Aero-Propulsion System, Ministry of Education, Northeastern University (rant No. VCAME202006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingshan Wang.

Appendix A

Appendix A

This appendix contains the stiffness matrices of plate and circular arc shell elements with arbitrary conditions.

$$ {\mathbf{K}}_{p11}^{i} = {\mathbf{A}}_{{p{2}}}^{{\left( {1} \right)T}} {\mathbf{C}}_{{p{2}}} {\mathbf{A}}_{{p{2}}}^{{\left( {1} \right)}} { + }\frac{{{1} - \mu_{p} }}{2}{\mathbf{B}}_{{p{2}}}^{{\left( {1} \right)T}} {\mathbf{C}}_{{p{2}}} {\mathbf{B}}_{{p{2}}}^{{\left( {1} \right)}} $$
(A1)
$$ {\mathbf{K}}_{p12}^{i} = \mu_{p} {\mathbf{A}}_{{p{2}}}^{{\left( {1} \right)T}} {\mathbf{C}}_{{p{2}}} {\mathbf{B}}_{{p{2}}}^{{\left( {1} \right)}} { + }\frac{{{1} - \mu_{p} }}{2}{\mathbf{B}}_{{p{2}}}^{{\left( {1} \right)T}} {\mathbf{C}}_{{p{2}}} {\mathbf{A}}_{{p{2}}}^{{\left( {1} \right)}} $$
(A2)
$$ {\mathbf{K}}_{p21}^{i} { = }\mu_{p} {\mathbf{B}}_{{p{2}}}^{{\left( {1} \right)T}} {\mathbf{C}}_{{p{2}}} {\mathbf{A}}_{{p{2}}}^{{\left( {1} \right)}} { + }\frac{{{1} - \mu_{p} }}{2}{\mathbf{A}}_{{p{2}}}^{{\left( {1} \right)T}} {\mathbf{C}}_{{p{2}}} {\mathbf{B}}_{{p{2}}}^{{\left( {1} \right)}} $$
(A3)
$$ {\mathbf{K}}_{p22}^{i} { = }{\mathbf{B}}_{{p{2}}}^{{\left( {1} \right)T}} {\mathbf{C}}_{{p{2}}} {\mathbf{B}}_{{p{2}}}^{{\left( {1} \right)}} { + }\frac{{{1} - \mu_{p} }}{2}{\mathbf{A}}_{{p{2}}}^{{\left( {1} \right)T}} {\mathbf{C}}_{{p{2}}} {\mathbf{A}}_{{p{2}}}^{{\left( {1} \right)}} $$
(A4)
$$ {\mathbf{K}}_{p33}^{i} { = }\frac{{h_{pi}^{2} }}{12}{\mathbf{A}}_{{p{2}}}^{{\left( {1} \right)T}} {\mathbf{C}}_{{p{2}}} {\mathbf{A}}_{{p{2}}}^{{\left( {1} \right)}} { + }\frac{{{1} - \mu_{p} }}{2}\kappa_{p} {\mathbf{E}}_{{p{2}}}^{{\left( {1} \right)T}} {\mathbf{C}}_{{p{2}}} {\mathbf{E}}_{{p{2}}}^{{\left( {1} \right)}} { + }\frac{{h_{pi}^{2} }}{12}\frac{{{1} - \mu_{p} }}{2}{\mathbf{B}}_{{p{2}}}^{{\left( {1} \right)T}} {\mathbf{C}}_{{p{2}}} {\mathbf{B}}_{{p{2}}}^{{\left( {1} \right)}} $$
(A5)
$$ {\mathbf{K}}_{p34}^{i} { = }\frac{{h_{pi}^{2} }}{12}\left( {\mu_{p} {\mathbf{A}}_{{p{2}}}^{{\left( {1} \right)T}} {\mathbf{C}}_{{p{2}}} {\mathbf{B}}_{{p{2}}}^{{\left( {1} \right)}} { + }\frac{{{1} - \mu_{p} }}{2}{\mathbf{B}}_{{p{2}}}^{{\left( {1} \right)T}} {\mathbf{C}}_{{p{2}}} {\mathbf{A}}_{{p{2}}}^{{\left( {1} \right)}} } \right) $$
(A6)
$$ {\mathbf{K}}_{p35}^{i} { = }\frac{{{1} - \mu_{p} }}{2}\kappa_{p} {\mathbf{E}}_{{p{2}}}^{{\left( {1} \right)T}} {\mathbf{C}}_{{p{2}}} {\mathbf{A}}_{{p{2}}}^{{\left( {1} \right)}} $$
(A7)
$$ {\mathbf{K}}_{p43}^{i} = \frac{{h_{pi}^{2} }}{12}\left( {\mu_{p} {\mathbf{B}}_{{p{2}}}^{{\left( {1} \right)T}} {\mathbf{C}}_{{p{2}}} {\mathbf{A}}_{{p{2}}}^{{\left( {1} \right)}} { + }\frac{{{1} - \mu_{p} }}{2}{\mathbf{A}}_{{p{2}}}^{{\left( {1} \right)T}} {\mathbf{C}}_{{p{2}}} {\mathbf{B}}_{{p{2}}}^{{\left( {1} \right)}} } \right) $$
(A8)
$$ {\mathbf{K}}_{p44}^{i} = \frac{{h_{pi}^{2} }}{12}{\mathbf{B}}_{{p{2}}}^{{\left( {1} \right)T}} {\mathbf{C}}_{{p{2}}} {\mathbf{B}}_{{p{2}}}^{{\left( {1} \right)}} + \frac{{{1} - \mu_{p} }}{2}\kappa_{p} {\mathbf{E}}_{{p{2}}}^{{\left( {1} \right)T}} {\mathbf{C}}_{{p{2}}} {\mathbf{E}}_{{p{2}}}^{{\left( {1} \right)}} + \frac{{h_{pi}^{2} }}{12}\frac{{{1} - \mu_{p} }}{2}{\mathbf{A}}_{{p{2}}}^{{\left( {1} \right)T}} {\mathbf{C}}_{{p{2}}} {\mathbf{A}}_{{p{2}}}^{{\left( {1} \right)}} $$
(A9)
$$ {\mathbf{K}}_{p45}^{i} = \frac{{{1} - \mu_{p} }}{2}\kappa_{p} {\mathbf{E}}_{{p{2}}}^{{\left( {1} \right)T}} {\mathbf{C}}_{{p{2}}} {\mathbf{B}}_{{p{2}}}^{{\left( {1} \right)}} $$
(A10)
$$ {\mathbf{K}}_{p53}^{i} = - \frac{{1 - \mu_{p} }}{2}\kappa_{p} {\mathbf{A}}_{{p{2}}}^{{\left( {1} \right)T}} {\mathbf{C}}_{{p{2}}} {\mathbf{E}}_{{p{2}}}^{{\left( {1} \right)}} $$
(A11)
$$ {\mathbf{K}}_{p54}^{i} = - \frac{{1 - \mu_{p} }}{2}\kappa_{p} {\mathbf{B}}_{{p{2}}}^{{\left( {1} \right)T}} {\mathbf{C}}_{{p{2}}} {\mathbf{E}}_{{p{2}}}^{{\left( {1} \right)}} $$
(A12)
$$ {\mathbf{K}}_{p55}^{i} = \frac{{1 - \mu_{p} }}{2}\kappa_{p} \left( {{\mathbf{A}}_{{p{2}}}^{{\left( {1} \right)T}} {\mathbf{C}}_{{p{2}}} {\mathbf{A}}_{{p{2}}}^{{\left( {1} \right)}} + {\mathbf{B}}_{{p{2}}}^{{\left( {1} \right)T}} {\mathbf{C}}_{{p{2}}} {\mathbf{B}}_{{p{2}}}^{{\left( {1} \right)}} } \right) $$
(A13)
$$ {\mathbf{K}}_{s11}^{i} { = }{\mathbf{A}}_{s2}^{\left( 1 \right)T} {\mathbf{C}}_{s2} {\mathbf{A}}_{s2}^{\left( 1 \right)} + \frac{{1 - \mu_{s} }}{{2R_{si}^{2} }}{\mathbf{B}}_{s2}^{\left( 1 \right)T} {\mathbf{C}}_{s2} {\mathbf{B}}_{s2}^{\left( 1 \right)} $$
(A14)
$$ {\mathbf{K}}_{s12}^{i} { = }\frac{{\mu_{s} }}{{R_{si} }}{\mathbf{A}}_{s2}^{\left( 1 \right)T} {\mathbf{C}}_{s2} {\mathbf{B}}_{s2}^{\left( 1 \right)} + \frac{{1 - \mu_{s} }}{{2R_{si} }}{\mathbf{B}}_{s2}^{\left( 1 \right)T} {\mathbf{C}}_{s2} {\mathbf{A}}_{s2}^{\left( 1 \right)} $$
(A15)
$$ {\mathbf{K}}_{s13}^{i} { = }\frac{{\mu_{s} }}{{R_{si} }}{\mathbf{A}}_{s2}^{\left( 1 \right)T} {\mathbf{C}}_{s2} {\mathbf{E}} $$
(A16)
$$ {\mathbf{K}}_{s14}^{i} { = }{\mathbf{K}}_{s15}^{i} { = }{\mathbf{0}} $$
(A17)
$$ {\mathbf{K}}_{s21}^{i} { = }\frac{{\mu_{s} }}{{R_{si} }}{\mathbf{B}}_{s2}^{\left( 1 \right)T} {\mathbf{C}}_{s2} {\mathbf{A}}_{s2}^{\left( 1 \right)} + \frac{{1 - \mu_{s} }}{{2R_{si} }}{\mathbf{A}}_{s2}^{\left( 1 \right)T} {\mathbf{C}}_{s2} {\mathbf{B}}_{s2}^{\left( 1 \right)} $$
(A18)
$$ {\mathbf{K}}_{s22}^{i} { = }\frac{1}{{R_{si}^{2} }}{\mathbf{B}}_{s2}^{\left( 1 \right)T} {\mathbf{C}}_{s2} {\mathbf{B}}_{s2}^{\left( 1 \right)} + \frac{{1 - \mu_{s} }}{2}{\mathbf{A}}_{s2}^{\left( 1 \right)T} {\mathbf{C}}_{s2} {\mathbf{A}}_{s2}^{\left( 1 \right)} + \frac{{\left( {1 - \mu_{s} } \right)\kappa_{s} }}{{2R_{si}^{2} }}{\mathbf{E}}^{T} {\mathbf{C}}_{s2} {\mathbf{E}} $$
(A19)
$$ {\mathbf{K}}_{s23}^{i} { = }\frac{1}{{R_{si}^{2} }}{\mathbf{B}}_{s2}^{\left( 1 \right)T} {\mathbf{C}}_{s2} {\mathbf{E}} - \frac{{\left( {1 - \mu_{s} } \right)\kappa_{s} }}{{2R_{si}^{2} }}{\mathbf{E}}^{T} {\mathbf{C}}_{s2} {\mathbf{B}}_{s2}^{\left( 1 \right)} $$
(A20)
$$ {\mathbf{K}}_{s24}^{i} { = }{\mathbf{0}} $$
(A21)
$$ {\mathbf{K}}_{s25}^{i} { = } - \frac{{\left( {1 - \mu_{s} } \right)\kappa_{s} }}{{2R_{si} }}{\mathbf{E}}^{T} {\mathbf{C}}_{s2} {\mathbf{E}} $$
(A22)
$$ {\mathbf{K}}_{s31}^{i} { = }\frac{{\mu_{s} }}{{R_{si} }}{\mathbf{E}}^{T} {\mathbf{C}}_{s2} {\mathbf{A}}_{s2}^{\left( 1 \right)} $$
(A23)
$$ {\mathbf{K}}_{s32}^{i} { = }\frac{1}{{R_{si}^{2} }}{\mathbf{E}}^{T} {\mathbf{C}}_{s2} {\mathbf{B}}_{s2}^{\left( 1 \right)} - \frac{{\left( {1 - \mu_{s} } \right)\kappa_{s} }}{{2R_{si}^{2} }}{\mathbf{B}}_{s2}^{\left( 1 \right)T} {\mathbf{C}}_{s2} {\mathbf{E}} $$
(A24)
$$ {\mathbf{K}}_{s33}^{i} { = }\frac{1}{{R_{si}^{2} }}{\mathbf{E}}^{T} {\mathbf{C}}_{s2} {\mathbf{E}} + \frac{{\left( {1 - \mu_{s} } \right)\kappa_{s} }}{2}{\mathbf{A}}_{s2}^{\left( 1 \right)T} {\mathbf{C}}_{s2} {\mathbf{A}}_{s2}^{\left( 1 \right)} + \frac{{\left( {1 - \mu_{s} } \right)\kappa_{s} }}{{2R_{si}^{2} }}{\mathbf{B}}_{s2}^{\left( 1 \right)T} {\mathbf{C}}_{s2} {\mathbf{B}}_{s2}^{\left( 1 \right)} $$
(A25)
$$ {\mathbf{K}}_{s34}^{i} { = }\frac{{\left( {1 - \mu_{s} } \right)\kappa_{s} }}{2}{\mathbf{A}}_{s2}^{\left( 1 \right)T} {\mathbf{C}}_{s2} {\mathbf{E}} $$
(A26)
$$ {\mathbf{K}}_{s35}^{e} { = }\frac{{\left( {1 - \mu_{s} } \right)\kappa_{s} }}{{2R_{si} }}{\mathbf{B}}_{s2}^{\left( 1 \right)T} {\mathbf{C}}_{s2} {\mathbf{E}} $$
(A27)
$$ {\mathbf{K}}_{s41}^{i} { = }{\mathbf{K}}_{s42}^{i} { = }{\mathbf{0}} $$
(A28)
$$ {\mathbf{K}}_{s43}^{i} { = }\frac{{\left( {1 - \mu_{s} } \right)\kappa_{s} }}{2}{\mathbf{E}}^{T} {\mathbf{C}}_{s2} {\mathbf{A}}_{s2}^{\left( 1 \right)} $$
(A29)
$$ {\mathbf{K}}_{s44}^{i} { = }\frac{{h_{si}^{2} }}{12}{\mathbf{A}}_{s2}^{\left( 1 \right)T} {\mathbf{C}}_{s2} {\mathbf{A}}_{s2}^{\left( 1 \right)} + \frac{{h_{si}^{2} }}{12}\frac{{\left( {1 - \mu_{s} } \right)}}{{2R_{si}^{2} }}{\mathbf{B}}_{s2}^{\left( 1 \right)T} {\mathbf{C}}_{s2} {\mathbf{B}}_{s2}^{\left( 1 \right)} + \frac{{\left( {1 - \mu_{s} } \right)\kappa_{s} }}{2}{\mathbf{E}}^{T} {\mathbf{C}}_{s2} {\mathbf{E}} $$
(A30)
$$ {\mathbf{K}}_{s45}^{i} { = }\frac{{h_{si}^{2} }}{12}\frac{{\mu_{s} }}{{R_{si} }}{\mathbf{A}}_{s2}^{\left( 1 \right)T} {\mathbf{C}}_{s2} {\mathbf{B}}_{s2}^{\left( 1 \right)} + \frac{{h_{si}^{2} }}{12}\frac{{\left( {1 - \mu_{s} } \right)}}{{2R_{si} }}{\mathbf{B}}_{s2}^{\left( 1 \right)T} {\mathbf{C}}_{s2} {\mathbf{A}}_{s2}^{\left( 1 \right)} $$
(A31)
$$ {\mathbf{K}}_{s51}^{i} { = }{\mathbf{0}} $$
(A32)
$$ {\mathbf{K}}_{s52}^{i} { = } - \frac{{\left( {1 - \mu_{s} } \right)\kappa_{s} }}{{2R_{si} }}{\mathbf{E}}^{T} {\mathbf{C}}_{s2} {\mathbf{E}} $$
(A33)
$$ {\mathbf{K}}_{s53}^{i} { = }\frac{{\left( {1 - \mu_{s} } \right)\kappa_{s} }}{{2R_{si} }}{\mathbf{E}}^{T} {\mathbf{C}}_{s2} {\mathbf{B}}_{s2}^{\left( 1 \right)} $$
(A34)
$$ {\mathbf{K}}_{s54}^{i} { = }\frac{{h_{si}^{2} }}{12}\frac{{\mu_{s} }}{{R_{si} }}{\mathbf{B}}_{s2}^{\left( 1 \right)T} {\mathbf{C}}_{s2} {\mathbf{A}}_{s2}^{\left( 1 \right)} + \frac{{h_{si}^{2} }}{12}\frac{{\left( {1 - \mu_{s} } \right)}}{{2R_{si} }}{\mathbf{A}}_{s2}^{\left( 1 \right)T} {\mathbf{C}}_{s2} {\mathbf{B}}_{s2}^{\left( 1 \right)} $$
(A35)
$$ {\mathbf{K}}_{s55}^{i} { = }\frac{{h_{si}^{2} }}{12}\frac{1}{{R_{si}^{2} }}{\mathbf{B}}_{s2}^{\left( 1 \right)T} {\mathbf{C}}_{s2} {\mathbf{B}}_{s2}^{\left( 1 \right)} + \frac{{h_{si}^{2} }}{12}\frac{{\left( {1 - \mu_{s} } \right)}}{2}{\mathbf{A}}_{s2}^{\left( 1 \right)T} {\mathbf{C}}_{s2} {\mathbf{A}}_{s2}^{\left( 1 \right)} + \frac{{\left( {1 - \mu_{s} } \right)\kappa_{s} }}{2}{\mathbf{E}}^{T} {\mathbf{C}}_{s2} {\mathbf{E}} $$
(A36)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Qin, B., Wang, Q. et al. Vibration behavior analysis of novelty corrugated-core sandwich plate structure by using first-order shear deformation plate and shell theories. Eur. Phys. J. Plus 137, 270 (2022). https://doi.org/10.1140/epjp/s13360-022-02478-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02478-0

Navigation