Skip to main content

Advertisement

Log in

Investigation from sensitivity to optimality for the transmission and detection of pine wilt disease

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Pine bark beetles with pinewood nematode attack on pine trees, causing the tree’s death. Substantial economic losses occur as a result of pine wilt affliction. In this study, a mathematical model has been developed to understand the transmission mechanism of pine wilt disease. A mathematical model comprising a coupled system of nonlinear ordinary differential equations has been studied rigorously. The present work involves the calculation of different parameters, including “basic reproduction number” \({R_o}\) and qualitative and quantitative study of the model. Quantitative analysis includes the calculation of constant solutions of the model and their global behavior. The quantitative study involves estimating the parameters using the accurate data of pine trees that the nematode destroyed during the decade. The key parameters have been identified, and a very efficient technique, stochastic intelligent computational heuristics, has been used to observe the fitness curves for the most influential parameters. Infectious hosts (pine trees) and vectors (bark beetles) are thoroughly examined through the fitness curves concerning the most influential parameters. Control policies have been suggested to check their robustness along with the graphical results. The graphical results agree with the analytical findings endorsing the efficiency of applied controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.M. Mota, K. Futai, P. Vieira, Pine wilt disease and the pinewood nematode, Bursaphelenchus xylophilus. in Integrated Management of Fruit Crops Nematodes (pp. 253–274). Springer, Dordrecht (2009)

  2. P. Abad, S. Tares, N. Brugier, G. De Guiran, Characterization of the relationships in the pinewood nematode species complex (PWNSC)(Bursaphelenchus spp.) using a heterologous unc-22 DNA probe from Caenorhabditis elegans. Parasitology, 102(2), 303–308 (1991)

  3. B.G. Zhao, K. Futai, J.R. Sutherland, Y. Takeuchi (eds.), Pine Wilt Disease (Springer, Tokyo, 2008), pp. 144–161

  4. S. Yano, Investigation on pine death in Nagasaki prefecture (in Japanese). Sanrin-Kouhou 4, 1–14 (1913)

    Google Scholar 

  5. B.G. Zhao, H.L. Wang, S.F. Han, Z.M. Han, Distribution and pathogenicity of bacteria species carried by Bursaphelenchus xylophilus in China. Nematology 5(6), 899–906 (2003)

    Article  Google Scholar 

  6. https://www.iufro.org/science/divisions/division-7/70000/70200/70210/

  7. https://gd.eppo.int/taxon/BURSXY/distribution

  8. A. Jajarmi, N. Pariz, S. Effati, A.V. Kamyad, Infinite horizon optimal control for nonlinear interconnected large-scale dynamical systems with an application to optimal attitude control. Asian J Control 14(5), 1239–1250 (2012)

    Article  MathSciNet  Google Scholar 

  9. S. Effati, H.S. Nik, A. Jajarmi, Hyperchaos control of the hyperchaotic Chen system by optimal control design. Nonlinear Dyn. 73(1–2), 499–508 (2013)

    Article  MathSciNet  Google Scholar 

  10. A. Jajarmi, M. Hajipour, An efficient recursive shooting method for the optimal control of time-varying systems with state time-delay. Appl. Math. Model. 40(4), 2756–2769 (2016)

    Article  MathSciNet  Google Scholar 

  11. F. Mohammadi, L. Moradi, D. Baleanu, A. Jajarmi, A hybrid functions numerical scheme for fractional optimal control problems: application to nonanalytic dynamic systems. J. Vib. Control 24(21), 5030–5043 (2018)

    MathSciNet  Google Scholar 

  12. A. Jajarmi, D. Baleanu, On the fractional optimal control problems with a general derivative operator. Asian J. Control (2019)

  13. A. Yoshimura, K. Kawasaki, F. Takasu, K. Togashi, K. Futai, N. Shigesada, Modeling the spread of pine wilt disease caused by nematodes with pine sawyers as vector. Ecology 80, 1691–1702 (1999)

    Article  Google Scholar 

  14. F. Takasu, N. Yamamoto, K. Kawasaki, K. Togashi, Y. Kishi, N. Shigesada, Modeling the expansion of an introduced tree disease. Biol. Invasions 2(2), 141–150 (2000)

    Article  Google Scholar 

  15. F. Takasu, Individual-basedmodeling of the spread of pine wilt disease: vector beetle dispersal and the Allee effect. Popul. Ecol. 51, 399–409 (2009)

    Article  Google Scholar 

  16. X. Shi, and S. Guohua, Analysis of the mathematical model for the spread of pine wilt disease. J. Appl. Math. (2013)

  17. K. Togashi, Y. Arakawa, Horizontal transmission of Bursaphelenchus xylophilus between sexes of Monochamus alternatus. J. Nematol. 35(1), 7 (2003)

    Google Scholar 

  18. K.S. Lee, D. Kim, Global dynamics of a pine wilt disease transmission model with nonlinear incidence rates. Appl. Math. Model. 37(6), 4561–4569 (2013)

    Article  MathSciNet  Google Scholar 

  19. M. Ozair, X. Shi, T. Hussain, Control measures of pine wilt disease. Comput. Appl. Math. 35(2), 519–531 (2016)

    Article  MathSciNet  Google Scholar 

  20. A.U. Awan, M. Ozair, Q. Din, T. Hussain, Stability analysis of pine wilt disease model by periodic use of insecticides. J. Biol. Dyn. 10(1), 506–524 (2016)

    Article  MathSciNet  Google Scholar 

  21. M. Ozair, T. Hussain, X. Shi, F. Tasneem, J.F. Gómez-Aguilar, Dynamical features of pine wilt disease model with asymptotic carrier. Eur. Phys. J. Plus 135(4), 1–28 (2020)

    Article  Google Scholar 

  22. A.U. Awan, M. Ozair, Q. Din, T. Hussain, Stability analysis of pine wilt disease model by periodic use of insecticides. J. Biol. Dyn. 10, 506–524 (2016)

    Article  MathSciNet  Google Scholar 

  23. A.A. Lashari, K.S. Lee, Stability analysis of a host-vector transmission model for pine wilt disease with asymptomatic carrier trees. J. Korean Math. Soc. 54, 987–997 (2017)

    Article  MathSciNet  Google Scholar 

  24. A.U. Awan, T. Hussain, K.O. Okosun, M. Ozair, Qualitative analysis and sensitivity based optimal control of pine wilt disease. Adv. Differ. Equ. 2018, 27 (2018)

    Article  MathSciNet  Google Scholar 

  25. A. Yusuf, S. Qureshi, M. Inc, A. I. Aliyu,, D. Baleanu and A. A. Shaikh, Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel. Chaos: Interdisciplinary J Nonlinear Sci. 28(12), 123121 (2018)

  26. A. Bernoussi, Global stability analysis of an SEIR epidemic model with relapse and general incidence rates. Appl. Sci. 21, 54–68 (2019)

    MathSciNet  MATH  Google Scholar 

  27. A. Diamandescu,\(\psi \)-asymptotic stability of solutions of a nonlinear Lyapunov matrix differential equation. Appl. Sci. 21, 96–106 (2019)

  28. D. Baleanu, A. Jajarmi, S.S. Sajjadi and D. Mozyrska, A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator. Chaos: Interdisciplinary J Nonlinear Sci. 29(8), 083127 (2019)

  29. S. Qureshi, A. Yusuf, A. A. Shaikh, M. Inc and D. Baleanu, Fractional modeling of blood ethanol concentration system with real data application. Chaos: Interdiscip. J. Nonlinear Sci. 29(1), 013143 (2019)

  30. J. Romero, A.U. Awan, A. Sharif, T. Hussain, M. Ozair, A. Aslam, F. Ali, Analysis of a mathematical model for the pine wilt disease using a graph theoretic approach. Appl. Sci. 22, 189–204 (2020)

    MathSciNet  MATH  Google Scholar 

  31. M. Ozair, T. Hussain, X. Shi, F. Tasneem, J.F. Gómez-Aguilar, Dynamical features of pine wilt disease model with asymptotic carrier. Eur. Phys. J. Plus 135(4), 366 (2020)

    Article  Google Scholar 

  32. P.A. Naik, M. Yavuz, S. Qureshi, J. Zu, S. Townley, Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan. Eur. Phys. J. Plus 135(10), 1–42 (2020)

    Article  Google Scholar 

  33. S. Qureshi, Periodic dynamics of rubella epidemic under standard and fractional Caputo operator with real data from Pakistan. Math. Comput. Simul. 178, 151–165 (2020)

    Article  MathSciNet  Google Scholar 

  34. P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  Google Scholar 

  35. J.P. LaSalle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics (Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1976)

  36. Z. Shuai, P.V.D. Driessche, Global stability of infectious diseases models using lyapunov functions. SIAM J. Appl. Math. 73, 1513–1532 (2013)

    Article  MathSciNet  Google Scholar 

  37. D.S. Kim, S.M. Lee, H.S. Huh, N.C. Park, C.G. Park, Escape of pine wood Nematode, Bursaphelenchus xylophilus, through feeding and oviposition behavior of Monochamus alternatus and M.saltuarius (Coleoptera: Cerambycidae) adults. Korean J. Appl. Entomol. 48(4), 527–533 (2009)

  38. N. Chitnis, J.M. Hyman, J.M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol. 70(5), 1272 (2008)

    Article  MathSciNet  Google Scholar 

  39. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko, The Mathematical Theory of Optimal Processes, vol. 4 (Gordon and Breach Science Publishers, New York, 1986)

    MATH  Google Scholar 

  40. W.H. Fleming, R.W. Rishel, Deterministic and Stochastic Optimal Control (Springer, New York, 1975)

    Book  Google Scholar 

  41. D.L. Lukes, Differential equations: Classical to Controlled, Mathematics in Science and Engineering, Academic Press, New York, 1982

  42. S. Lenhart, J.T. Workman, Optimal Control Applied to Biological Models (Chapman and Hall/CRC Press, London/Boca Raton, Mathematical and Computational Biology Series, 2007)

Download references

Acknowledgements

All the authors are thankful to Prof. Muhammad Azam, Department of English, Govt. College Jauharabad, for correcting the paper grammatically and improving its language as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aziz Ullah Awan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozair, M., Hussain, T., Awan, A.U. et al. Investigation from sensitivity to optimality for the transmission and detection of pine wilt disease. Eur. Phys. J. Plus 137, 258 (2022). https://doi.org/10.1140/epjp/s13360-022-02465-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02465-5

Navigation