Skip to main content
Log in

On some unexplored decoherence aspects in the Caldeira–Leggett formalism: arrival time distributions, identical particles and diffraction in time

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Some unexplored decoherence aspects within the Caldeira–Leggett master equation are analyzed and discussed. The decoherence process is controlled by the two environment parameters, the relaxation rate or friction and the temperature, leading to a gradual transition from the quantum to classical regime. Arrival time distributions, non-minimum-uncertainty-product or stretching Gaussian wave packets, identical particles and diffraction in time display interesting features during the decoherence process undergone by the time dependent interference patterns. We show that the presence of a constant force field does not affect the decoherence, positive values of the stretching parameter reduce the rate of decoherence, the symmetry of the wave function for identical particles is not robust enough in the gradual decoherence process because indistinguishability is lost, and diffraction in time and space is gradually washed out by increasing the temperature and/or relaxation rate in the zero dissipation limit within the so-called quantum shutter problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.D. Zeh, Found. Phys. 1, 69 (1970)

    Article  ADS  Google Scholar 

  2. W. H. Zurek, Phys. Rev. D 24, 1516 (1981); 26, 1862 (1982)

  3. E. Joos, H.D. Zeh, Z. Phys. B Condens Matter 59, 223 (1985)

    Article  ADS  Google Scholar 

  4. A.O. Caldeira, A.J. Leggett, Phys. A 121, 587 (1983)

    Article  MathSciNet  Google Scholar 

  5. A.O. Caldeira, An introduction to macroscopic quantum phenomena and quantum dissipation (Cambridge University Press, Cambridge, 2014)

    Book  Google Scholar 

  6. M. Schlosshauer, Decoherence (Springer, Heidelberg, 2007)

    MATH  Google Scholar 

  7. S.V. Mousavi and S. Miret-Artés, Ann. Phys. 393, 76 (2018); J. Phys. Commun. 2, 035029 (2018); Eur. Phys. J. Plus, 134, 311 (2019); 134, 431 (2019)

  8. S.V. Mousavi, S. Miret-Artés, Eur. Phys. J. Plus 135, 83 (2020)

    Article  Google Scholar 

  9. S.V. Mousavi, S. Miret-Artés, Entropy 23, 1469 (2021)

    Article  ADS  Google Scholar 

  10. M. Moshinsky, Phys. Rev. 88, 625 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  11. J.G. Muga, C.R. Leavens, Phys. Rep. 338, 353 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  12. P.R. Holland, The Quantum Theory of Motion (Cambridge University Press, Cambridge, 1993)

    Book  Google Scholar 

  13. D. Dürr, S. Goldstein, N. Zanghi, J. Stat. Phys. 68, 259 (1992)

    Article  ADS  Google Scholar 

  14. J.G. Muga, R. Sala, J.P. Palao, Superlattices Microstruct. 23, 833 (1998). (and references therein)

    Article  ADS  Google Scholar 

  15. C.R. Leavens, Bohm trajectory approach to timing electrons. Lect. Notes Phys. 734, 129 (2008)

    Article  ADS  Google Scholar 

  16. A. Venugopalan, Phys. Rev. A 50, 2742 (1994)

    Article  ADS  Google Scholar 

  17. A. Venugopalan, D. Kumar, R. Ghosh, Phys. A 220, 563 (1995)

    Article  Google Scholar 

  18. J.M. Yearsley, Phys. Rev. A 82, 012116 (2010)

    Article  ADS  Google Scholar 

  19. S.V. Mousavi, S. Miret-Artés, Eur. Phys. J. Plus 135, 324 (2020)

    Article  Google Scholar 

  20. H.-P. Bauer, F. Petruccione, The theory of open quantum systems (Oxford University Press, Oxford, 2002)

    Google Scholar 

  21. G.W. Ford, R.F. O’Connell, Phys. Lett. A 286, 87 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  22. W.H. Zurek, Phys. Today 44(10), 36 (1991)

    Article  Google Scholar 

  23. T. Qureshi, A. Venugopalan, Int. J. Mod. Phys. B 22, 981 (2008)

    Article  ADS  Google Scholar 

  24. A. del Campo, G. García-Calderónan, J.G. Muga, Phys. Rep. 476, 1 (2009)

Download references

Acknowledgements

SVM acknowledges support from the University of Qom and SMA from Fundación Humanismo y Ciencia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Mousavi.

Appendix A: continuity equation for the single-particle density

Appendix A: continuity equation for the single-particle density

Taking time derivative of both sides of Eq. (48) yields

$$\begin{aligned} \frac{ \partial }{ \partial t} P_{ \text {sp} , \pm }(x, t)= & {} {\mathcal {N}}_{\pm }^2 \left\{ \frac{ \partial }{ \partial t}P_{11}(x, t) + \frac{ \partial }{ \partial t}P_{22}(x, t) \pm \text {Re} \{ \int dx' \frac{ \partial }{ \partial t} [ P_{12}(x, t) P_{21}(x', t) ] \} \right\} \end{aligned}$$
(A1)

Now using the continuity Eq. (6) and imposing appropriate boundary condition yielding zero boundary terms we obtain the following continuity equation,

$$\begin{aligned} \frac{ \partial }{ \partial t} P_{ \text {sp} , \pm }(x, t) + \frac{ \partial }{ \partial x} J_{ \text {sp} , \pm }(x, t)= & {} 0 \end{aligned}$$
(A2)

where

$$\begin{aligned} J_{ \text {sp} , \pm }(x, t)= & {} {\mathcal {N}}_{\pm }^2 [ J_{11}(x, t) + J_{22}(x, t) \pm \text {Re} \{J_{12}(x, t) s(t)\} ] \end{aligned}$$
(A3)

and \( J_{kl}(x, t) \) given by diagonal elements of (5) satisfies Eq. (6) with \( P_{kl}(x, t) \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, S.V., Miret-Artés, S. On some unexplored decoherence aspects in the Caldeira–Leggett formalism: arrival time distributions, identical particles and diffraction in time. Eur. Phys. J. Plus 137, 140 (2022). https://doi.org/10.1140/epjp/s13360-022-02367-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02367-6

Navigation