Skip to main content
Log in

Characteristics of moving hot block and non-Fourier heat flux model on sinusoidal wavy cavity filled with hybrid nanofluid

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper examines the natural convection in a sinusoidal wavy cavity filled with TiO2–Cu/water hybrid nanofluid under the effect of internal heat generation, inclined magnetic field and thermal radiation. The non-Fourier heat flux model is utilized for the formulation of the temperature equation. This type of wavy cavity investigation is suitable in the cooling systems of microelectronic devices, wall bricks, underground cable systems and mass and heat transfers occurring in chemical reactors. The dimensionless forms of governing equations and boundary conditions are transformed numerically using the finite volume approach via the SIMPLER algorithm simultaneously with MATLAB solver. The gained outcomes are portrayed graphically via streamlines, isotherms, local and average Nusselt numbers. The heat transfer rate and fluid flow in view of internal heated and wavy walls play a significant role. The higher values of heat generation parameter increase the rate of heat transfer and decrease the local Nusselt numbers. Improving the undulation parameter increases the complexity of the flow domain and reduces convective transport as a result. When compared to TiO2 nanoparticle, Cu nanoparticles generate a high heat transfer rate in Ha. The internal heat generation parameter is increased from − 2 to 2, it grouped the streamlines closer toward the heated wall and to the top of the cold wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

Ha:

Hartmann number

Q :

Heat source

C p :

Specific heat

Tio2 :

Titanium dioxide

Cu:

Copper

k :

Thermal conductivity

Nu m :

Average nusselt number

H :

Length of enclosure

Rd :

Thermal radiation

Ra:

Rayleigh number

B :

Left wall length

Pr:

Prandtl number

P :

Pressure (Nm2)

g :

Gravitational field (m s2)

B 0 :

Magnetic field

Nu v :

Local nusselt number

T :

Temperature

x, y :

Cartesian coordinates

X, Y :

Dimensionless cartesian coordinates

U :

Dimensionless velocity component along x-direction

u :

Velocity component along x-direction (ms1)

v :

Velocity component along y-direction (m s 1)

V :

Dimensionless velocity component along y-direction

\(\gamma\) :

Relaxation parameter

\(\nu\) :

Kinematic viscosity (m2s1)

\(\alpha\) :

Thermal diffusivity (m2 s1)

\(\lambda\) :

Number of undulations

\(\theta\) :

Dimensionless temperature

\(\mu\) :

Dynamic viscosity (kg m1 s1)

\(\phi\) :

Nanoparticles volume fraction

\(\sigma\) :

Electrical conductivity (s m1)

\(\Phi\) :

Inclination angle

\(\rho\) :

Density (kg m3)

f :

Fluid

c :

Cold

nf :

Nanofluid

hnf :

Hybrid nanofluid

bf :

Base fluid

References

  1. I. Hashim, A.I. Alsabery, M.A. Sheremet, A.J. Chamkha, Adv. Powder Technol. 30, 399 (2019)

    Article  Google Scholar 

  2. A.I. Alsabery, T. Tayebi, A.J. Chamkha, I. Hashim, Int. Commun. Heat Mass Transf. 95, 197 (2018)

    Article  Google Scholar 

  3. F.S. Oğlakkaya, C. Bozkaya, Int. J. Mech. Sci. 148, 231 (2018)

    Article  Google Scholar 

  4. S.E. Ahmed, M.A. Mansour, A.M. Rashad, Z. Morsy, Comput. Therm. Sci. 12, 217 (2020)

    Article  Google Scholar 

  5. A. Aghaei, S. Bhattacharyya, A. Dezfulizadeh, A.S. Goldanlou, S. Rostami, M. Sharifpur, Eng. Appl. Comput. Fluid Mech. 15, 1034 (2021)

    Google Scholar 

  6. F.M. Azizul, A.I. Alsabery, I. Hashim, Int. J. Mech. Sci. 175, 105529 (2020)

    Article  Google Scholar 

  7. Y. Ma, M. Jamiatia, A. Aghaei, M. Sepehrirad, A. Dezfulizadeh, M. Afrand, Int. J. Mech. Sci. 163, 105148 (2019)

    Article  Google Scholar 

  8. I. Pop, S. Mikhail, D.S. Cimpean, Int. J. Numer. Methods Heat Fluid Flow 27, 924 (2017)

    Article  Google Scholar 

  9. A. Aghaei, H. Khorasanizadeh, G. Sheikhzadeh, M. Abbaszadeh, J. Magn. Magn. Mater. 403, 133 (2016)

    Article  ADS  Google Scholar 

  10. H. Nong, A.M. Fatah, S.A. Shehzad, T. Ambreen, M.M. Selim, A.B. Albadarin, J. Mol. Liq. 336, 116324 (2021)

    Article  Google Scholar 

  11. S.S. Ghadikolaei, M. Yassari, H. Sadeghi, K. Hosseinzadeh, D.D. Ganji, Powder Technol. 322, 428 (2017)

    Article  Google Scholar 

  12. N. Syazana, N. Bachok, N. Arifin, H. Rosali, Chinese. J. Phys. 65, 436 (2020)

    Google Scholar 

  13. P.B.A. Reddy, N. Bhaskar Reddy, S. Suneetha, J. Appl. Fluid Mech. 5, 119 (2012)

    Google Scholar 

  14. M.M. Rashidi, S. Bagheri, E. Momoniat, N. Freidoonimehr, Ain Shams Eng. J. 8, 77 (2017)

    Article  Google Scholar 

  15. S. Jakeer, B.A.R. Polu, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 95440892110489 (2021)

  16. M. Shekaramiz, S. Fathi, H.A. Ataabadi, H. Kazemi-Varnamkhasti, D. Toghraie, Int. J. Therm. Sci. 170, 107179 (2021)

    Article  Google Scholar 

  17. A.M. Rashad, M.A. Ismael, A.J. Chamkha, M.A. Mansour, J. Taiwan Inst. Chem. Eng. 68, 173 (2016)

    Article  Google Scholar 

  18. S. Jakeer, P. BalaAnki Reddy, A.M. Rashad, H.A. Nabwey, Alexandria Eng. J. 60, 821 (2021)

    Article  Google Scholar 

  19. A. Shahriari, H.R. Ashorynejad, I. Pop, J. Therm. Anal. Calorim. 135, 283 (2019)

    Article  Google Scholar 

  20. M. Sheikholeslami, M. Sadoughi, Int. J. Heat Mass Transf. 113, 106 (2017)

    Article  Google Scholar 

  21. A. Aghaei, H. Khorasanizadeh, G.A. Sheikhzadeh, Eur. Phys. J. Plus 134, 1 (2019)

    Article  Google Scholar 

  22. S. Jakeer, P. Bala Anki Reddy, Phys. Scr. 95, 125203 (2020)

    Article  ADS  Google Scholar 

  23. S.R.R. Reddy, P.B. Anki, K. Bhattacharyya, P.B.A. Reddy, K. Bhattacharyya, Adv. Powder Technol. 30, 1 (2019)

    Article  Google Scholar 

  24. M.M. Bhatti, M.M. Rashidi, J. Mol. Liq. 221, 567 (2016)

    Article  Google Scholar 

  25. P.B.A. Reddy, N.B. Reddy, Int. J. Appl. Math Mech. 7, 96 (2011)

    Google Scholar 

  26. M. Sheikholeslami, T. Hayat, A. Alsaedi, Int. J. Heat Mass Transf. 96, 513 (2016)

    Article  Google Scholar 

  27. M. Boukendil, L. El Moutaouakil, Z. Zrikem, A. Abdelbaki, Mater. Today Proc. 27, 3065 (2020)

    Article  Google Scholar 

  28. M. Bouafia, S. Hamimid, M. Guellal, Int. J. Therm. Sci. 96, 236 (2015)

    Article  Google Scholar 

  29. M. Usman, Z.H. Khan, M.B. Liu, Phys. A Stat. Mech. Its Appl. 535, 122443 (2019)

    Article  Google Scholar 

  30. K. Mehmood, S. Hussain, M. Sagheer, J. Mol. Liq. 238, 485 (2017)

    Article  Google Scholar 

  31. Y. Zheng, S. Yaghoubi, A. Dezfulizadeh, S. Aghakhani, A. Karimipour, I. Tlili, J. Therm. Anal. Calorim. 141, 635 (2020)

    Article  Google Scholar 

  32. A.M. Aly, Z.A.S. Raizah, Phys. A Stat. Mech. Its Appl. 537, 122623 (2020)

    Article  Google Scholar 

  33. H.A. Madkhali, M. Nawaz, R.S. Saif, M.F. Afzaal, S.O. Alharbi, M.K. Alaoui, Int. Commun. Heat Mass Transf. 128, 105580 (2021)

    Article  Google Scholar 

  34. M.A. Mansour, S.E. Ahmed, A.M. Rashad, J. Appl. Fluid Mech. 9, 2515 (2016)

    Article  Google Scholar 

  35. S.E. Ahmed, Alexandria Eng. J. 55, 299 (2016)

    Article  Google Scholar 

  36. S.E. Ahmed, M.A. Mansour, A.M. Rashad, T. Salah, J. Therm. Anal. Calorim. 139, 3133 (2020)

    Article  Google Scholar 

  37. H.T. Cheong, S. Sivasankaran, M. Bhuvaneswari, Int. J. Numer. Methods Heat Fluid Flow 27, 287 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bala Anki Reddy Polu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaik, J., Polu, B.A.R., Mohamed Ahmed, M. et al. Characteristics of moving hot block and non-Fourier heat flux model on sinusoidal wavy cavity filled with hybrid nanofluid. Eur. Phys. J. Plus 137, 131 (2022). https://doi.org/10.1140/epjp/s13360-022-02361-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02361-y

Navigation